The European Physical Journal B

, Volume 69, Issue 1, pp 37–43 | Cite as

Detecting and quantifying temporal correlations in stochastic resonance via information theory measures

Topical issue on Stochastic Resonance

Abstract

We show that Information Theory quantifiers are suitable tools for detecting and for quantifying noise-induced temporal correlations in stochastic resonance phenomena. We use the Bandt & Pompe (BP) method [Phys. Rev. Lett. 88, 174102 (2002)] to define a probability distribution, P, that fully characterizes temporal correlations. The BP method is based on a comparison of neighboring values, and here is applied to the temporal sequence of residence-time intervals generated by the paradigmatic model of a Brownian particle in a sinusoidally modulated bistable potential. The probability distribution P generated via the BP method has associated a normalized Shannon entropy, H[P], and a statistical complexity measure, C[P], which is defined as proposed by Rosso et al. [Phys. Rev. Lett. 99, 154102 (2007)]. The statistical complexity quantifies not only randomness but also the presence of correlational structures, the two extreme circumstances of maximum knowledge (“perfect order") and maximum ignorance (“complete randomness") being regarded an “trivial", and in consequence, having complexity C = 0. We show that both, H and C, display resonant features as a function of the noise intensity, i.e., for an optimal level of noise the entropy displays a minimum and the complexity, a maximum. This resonant behavior indicates noise-enhanced temporal correlations in the sequence of residence-time intervals. The methodology proposed here has great potential for the precise detection of subtle signatures of noise-induced temporal correlations in real-world complex signals.

PACS

05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion 05.40.Ca Noise 05.45.Tp Time series analysis 02.50.-r Probability theory, stochastic processes, and statistics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Gammaitoni, F. Marchesoni, E. Menichella-Saetta, S. Santucci, Phys. Rev. Lett. 62, 349 (1989)Google Scholar
  2. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)Google Scholar
  3. R. Benzi, G. Parisi, A. Sutera, A. Vulpiani, Tellus 34, 10 (1982)Google Scholar
  4. R. Benzi, A. Sutera, A. Vulpiani, J. Phys. A 14, L453 (1981)Google Scholar
  5. K. Wiesenfeld, F. Moss, Nature 373, 6509 (1995)Google Scholar
  6. B. Lindner, J. Garcia-Ojalvo, A. Neiman, L. Schimansky-Geier, Phys. Rep. 392, 321 (2004)Google Scholar
  7. B. McNamara, K. Wiesenfeld, R. Roy, Phys. Rev. Lett. 60, 2626 (1988)Google Scholar
  8. G. Giacomelli, F. Marin, I. Rabbiosi, Phys. Rev. Lett. 82, 675 (1999)Google Scholar
  9. R.L. Badzey, P. Mohanty, Nature 437, 995 (2005)Google Scholar
  10. P. Jung, P. Hanggi, Phys. Rev. A 44, 8032 (1991)Google Scholar
  11. J.K. Douglass, L. Wilkens, E. Pantazelou, F. Moss, Nature 365, 6444 (1993)Google Scholar
  12. J.E. Levin, J.P. Miller, Nature 380, 6570 (1996)Google Scholar
  13. J.J. Collins, T.T. Imhoff, P. Grigg, Nature 383, 770 (1996)Google Scholar
  14. D. Russell, L. Wilkens, F. Moss, Nature 402, 291 (1999)Google Scholar
  15. M.H. Choi, R.F. Fox, P. Jung, Phys. Rev. E 57, 6335 (1998)Google Scholar
  16. L. Gammaitoni, F. Marchesoni, S. Santucci, Phys. Rev. Lett. 74, (1995) 1052 (1995)Google Scholar
  17. C. Heneghan, C.C. Chow, J.J. Collins, T.T. Imhoff, S.B. Lowen, M.C. Teich, Phys. Rev. E 54, R2228 (1996)Google Scholar
  18. A.R. Bulsara, A. Zador, Phys. Rev. E 54, R2185 (1996)Google Scholar
  19. A. Neiman, B. Shulgin, V. Anishchenko, E. Ebeling, L. Schimansky-Geier, J. Freund, Phys. Rev. Lett. 76, 4299 (1996)Google Scholar
  20. M.E. Inchiosa, J.W.C. Robinson, A.R. Bulsara, Phys. Rev. Lett. 85, 3369 (2000)Google Scholar
  21. I. Goychuk, P. Hänggi, Phys. Rev. E 61, 4272 (2000)Google Scholar
  22. I. Goychuk, Phys. Rev. E 64, 021909 (2001)Google Scholar
  23. I. Goychuk, P. Hänggi, Eur. Phys. J. B (2009), DOI: 10.1140/epjb/e2009-00049-yGoogle Scholar
  24. R. López-Ruiz, H.L. Mancini, X. Calbet, Phys. Lett. A 209, 321 (1995)Google Scholar
  25. M.T. Martín, A. Plastino, O.A. Rosso, Phys. Lett. A 311, 126 (2003)Google Scholar
  26. P.W. Lamberti, M.T. Martín, A. Plastino, O.A. Rosso, Physica A 334, 119 (2004)Google Scholar
  27. For discussion of other simple alternatives of the disequilibrium Q and the corresponding advantages and disadvantages of each ones see Lamberti2004Google Scholar
  28. A. Witt, A. Neiman, J. Kurths, Phys. Rev. E 55, 5050 (1997)Google Scholar
  29. O.A. Rosso, C. Masoller, Phys. Rev. E (2009), in pressGoogle Scholar
  30. O.A. Rosso, H. Larrondo, M.T. Martin, A. Plastino, M.A. Fuentes, Phys. Rev. Lett. 99, 154102 (2007)Google Scholar
  31. C.E. Shannon, Bell System Technical Journal 27, 379 (1948)Google Scholar
  32. P. Grassberger, Int. J. Theo. Phys. 25, 907 (1986)Google Scholar
  33. P. Grassberger, Physica A 140, 319 (1986)Google Scholar
  34. J.P. Crutchfield, K. Young, Phys. Rev. Lett. 63, 105 (1989)Google Scholar
  35. R. Wackerbauer, A. Witt, H. Altmanspacher, J. Kurths, H. Scheingraber, Chaos Solitons & Fractals 4, 133 (1994)Google Scholar
  36. D.P. Feldman, J.P. Crutchfield, Phys. Lett. A 238, 244 (1998)Google Scholar
  37. J.S. Shiner, M. Davison, P.T. Landsberg, Phys. Rev. E 59, 1459 (1999)Google Scholar
  38. H. Kantz, J. Kurths, G. Meyer-Kress, Nonlinear Analysis of Physiological Data (Springer, Berlin, 1998)Google Scholar
  39. T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New York, 1991)Google Scholar
  40. W.K. Wootters, Phys. Rev. D 23, 357 (1981)Google Scholar
  41. M.T. Martín, A. Plastino, O.A. Rosso, Physica A 369, 439 (2006)Google Scholar
  42. A.R. Plastino, A. Plastino, Phys. Rev. E 54, 4423 (1996)Google Scholar
  43. X. Calbet, R. López-Ruiz, Phys. Rev. E 63, 066116 (2001)Google Scholar
  44. O.A. Rosso, M.T. Martín, A. Figliola, K. Keller, A. Plastino, Journal on Neuroscience Methods 153, 163 (2006)Google Scholar
  45. A. M. Kowalski, M.T. Martín, A. Plastino, O.A. Rosso, Physica D 233, 21 (2007)Google Scholar
  46. L. Zunino, D.G. Pérez, M.T. Martín, A. Plastino, M. Garavaglia, O.A. Rosso, Phys. Rev. E 75, 031115 (2007)Google Scholar
  47. C. Bandt, B. Pompe, Phys. Rev. Lett. 88, 174102 (2002)Google Scholar
  48. K. Keller, M. Sinn, Physica A 356, 114 (2005)Google Scholar
  49. H.A. Larrondo, M.T. Martín, C.M. González, A. Plastino, O.A. Rosso, Phys. Lett. A 352, 421 (2006)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine and Hunter Medical Research Institute, School of Electrical Engineering and Computer Science, The University of Newcastle, University DriveCallaghanAustralia
  2. 2.Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Ciudad UniversitariaBuenos AiresArgentina
  3. 3.Departament de Fisica i Enginyeria NuclearUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations