Springer Nature is making SARS-CoV-2 and COVID-19 research free View research | View latest news | Sign up for updates

Hamilton-like statistics in onedimensional driven dissipative many-particle systems

  • 72 Accesses

  • 26 Citations

Abstract

This contribution presents a derivation of the steady-state distribution of velocities and distances of driven particles on a onedimensional periodic ring, using a Fokker-Planck formalism. We will compare two different situations: (i) symmetrical interaction forces fulfilling Newton’s law of “actio = reactio” and (ii) asymmetric, forwardly directed interactions as, for example in vehicular traffic. Surprisingly, the steady-state velocity and distance distributions for asymmetric interactions and driving terms agree with the equilibrium distributions of classical many-particle systems with symmetrical interactions, if the system is large enough. This analytical result is confirmed by computer simulations and establishes the possibility of approximating the steady state statistics in driven many-particle systems by Hamiltonian systems. Our finding is also useful to understand the various departure time distributions of queueing systems as a possible effect of interactions among the elements in the respective queue [Physica A 363, 62 (2006)].

This is a preview of subscription content, log in to check access.

References

  1. T. Riethmüller, L. Schimanski-Geier, D. Rosenkranz, T. Pöschel, J. Stat. Phys. 86, 421 (1997)

  2. U. Erdmann, W. Ebeling, L. Schimansky-Geier, F. Schweitzer, Eur. Phys. J. B-Cond. Matter 15, 105 (2000)

  3. P. Reimann, R. Kawai, C. Van den Broeck, P. Haenggi, Europhys. Lett. 45, 545 (1999)

  4. R. Mahnke, J. Kaupužs, Phys. Rev. E 59, 117 (1999)

  5. R. Kühne, R. Mahnke, I. Lubashevsky, J. Kaupužs, Phys. Rev. E 65, 66125 (2002)

  6. D. Helbing, Rev. Mod. Phys. 73, 1067 (2001)

  7. D. Helbing, M. Treiber, eprint arxiv:cond-mat/0307219 (2003)

  8. M. Krbalek, D. Helbing, Physica A 333, 370 (2004)

  9. D. Helbing, M. Treiber, A. Kesting, Physica A 363, 62 (2006)

  10. M. Mehta, Random Matrices (Academic Press, 2004)

  11. M. Krbalek, P. Šeba, P. Wagner, Phys. Rev. E 64, 066119 (2001)

  12. D.N. Zubarev, V.A. Morozov, G. Röpke, Statistical Mechanics of Nonequilibrium Processes (Akademie Verlag, Berlin, 1996+1997), Vols. 1, 2

  13. K.L. Klimontovich, Statistical Theory of Open Systems (Kluwer Academic Publishers, Dordrecht, 1995)

  14. W. Ebeling, I. Sokolov, Statistical Thermodynamics and Stochastic Theory of Nonequilibrium Systems (World Scientific, Singapore, 2005)

  15. M. Krbálek, J. Phys. A: Mathematical and Theoretical 40, 5813 (2007)

  16. T. Antal, G.M. Schütz, Phys. Rev. E 62, 83 (2000)

  17. H. Risken, The Fokker-Planck Equation, 2nd edn. (Springer, Berlin, 1989)

  18. D. Helbing, Eur. Phys. J. B, submitted (2008), e-print http://arxiv.org/abs/0805.3402

  19. M. Bando, K. Hasebe, K. Nakanishi, A. Nakayama, A. Shibata, Y. Sugiyama, J. Phys. I France 5, 1389 (1995)

  20. L. Landau, E. Lifshitz, Fluid Mechanics (Addison Wesley, Reading, MA, 1959)

  21. M. Cross, P. Hohenberg, Rev. Mod. Phys. 65, 872 (1993)

  22. A.A. Zaikin, L. Schimansky-Geier, Phys. Rev. E 58, 4355 (1998)

  23. I. Rehberg, S. Rasenat, M. de la Torre Juárez, W. Schöpf, F. Hörner, G. Ahlers, H.R. Brand, Phys. Rev. Lett. 67, 596 (1991)

  24. M. Wu, G. Ahlers, D. Cannell, Phys. Rev. Lett. 75, 1743 (1995)

  25. M. Treiber, Phys. Rev. E 53, 577 (1996)

  26. W. Schöpf, I. Rehberg, Journal of Fluid Mechanics Digital Archive 271, 235 (2006)

  27. M. Treiber, L. Kramer, Phys. Rev. E 49, 3184 (1994)

  28. M.A. Scherer, G. Ahlers, F. Hörner, I. Rehberg, Phys. Rev. Lett. 85, 3754 (2000)

  29. D. Helbing (2008), eprint arxiv:physics/0805.3402

Download references

Author information

Correspondence to D. Helbing.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Treiber, M., Helbing, D. Hamilton-like statistics in onedimensional driven dissipative many-particle systems. Eur. Phys. J. B 68, 607–618 (2009). https://doi.org/10.1140/epjb/e2009-00121-8

Download citation

PACS

  • 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion
  • 05.10.Gg Stochastic analysis methods
  • 47.70.-n Reactive and radiative flows
  • 89.40.-a Transportation