Advertisement

Systematic semiclassical expansion for harmonically trapped ideal Bose gases

  • B. Klünder
  • A. PelsterEmail author
Article

Abstract

Using a field-theoretic approach, we systematically generalize the usual semiclassical approximation for a harmonically trapped ideal Bose gas in such a way that its range of applicability is essentially extended. With this we can analytically calculate thermodynamic properties even for small particle numbers. In particular, it now becomes possible to determine the critical temperature as well as the temperature dependence of both heat capacity and condensate fraction in low-dimensional traps, where the standard semiclassical approximation is not even applicable.

PACS

03.65.Sq Semiclassical theories and applications 03.75.Hh Static properties of condensates; thermodynamical, statistical, and structural properties 05.70.Ce Thermodynamic functions and equations of state 

References

  1. S. Grossmann, M. Holthaus, Phys. Lett. A 208, 188 (1995)Google Scholar
  2. W. Ketterle, N.J. van Druten, Phys. Rev. A 54, 656 (1996)Google Scholar
  3. J.R. Ensher, D.S. Jin, M.R. Matthews, C.E. Wieman, E.A. Cornell, Phys. Rev. Lett. 77, 4984 (1996)Google Scholar
  4. H.D. Politzer, Phys. Rev. A 54, 5048 (1996)Google Scholar
  5. K. Kirsten, D.J. Toms, Phys. Rev. A 54, 4188 (1996)Google Scholar
  6. M. Gajda, K. Rzazewski, Phys. Rev. Lett. 78, 2686 (1997)Google Scholar
  7. C. Weiss, M. Wilkens, Opt. Express 1, 272 (1997)Google Scholar
  8. M. Wilkens, C. Weiss, J. Mod. Opt. 44, 1801 (1997)Google Scholar
  9. M. Holthaus, E. Kalinowski, K. Kirsten, Ann. Phys. (N.Y.) 270, 198 (1998)Google Scholar
  10. M.O. Scully, Phys. Rev. Lett. 82, 3927 (1999)Google Scholar
  11. M. Holthaus, E. Kalinowski, Ann. Phys. (N.Y.) 276, 321 (1999)Google Scholar
  12. M. Holthaus, K.T. Kapale, V.V. Kocharovsky, M.O. Scully, Physica A 300, 433 (2001)Google Scholar
  13. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2001)Google Scholar
  14. C. Weiss, M. Holthaus, Europhys. Lett. 59, 486 (2002)Google Scholar
  15. C. Weiss, M. Block, M. Holthaus, G. Schmieder, J. Phys. A: Math. Gen. 36, 1827 (2003)Google Scholar
  16. L.P. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Clarendon Press, Oxford, 2003)Google Scholar
  17. V.I. Yukalov, E.P. Yukalova, Phys. Rev. A 72, 063611 (2005)Google Scholar
  18. V.I. Yukalov, Phys. Rev. A 72, 033608 (2005)Google Scholar
  19. V.V. Kocharovsky, V.V. Kocharovsky, M. Holthaus, C.H.R. Ooi, A. Svidzinsky, W. Ketterle, M.O. Scully. Adv. At. Mol. Phys. 53, 291 (2006)Google Scholar
  20. K. Glaum, H. Kleinert, A. Pelster, Phys. Rev. A 76, 063604 (2007)Google Scholar
  21. R.M. Ziff, G.E. Uhlenbeck, M. Kac, Phys. Rep. 32, 169 (1977)Google Scholar
  22. P. Navez, D. Bitouk, M. Gajda, Z. Idziaszek, K. Rzazewski, Phys. Rev. Lett. 79, 1789 (1997)Google Scholar
  23. H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 4th edn. (World Scientific, Singapore, 2006); online version: http://www.physik.fu-berlin.de/~kleinert/kleinert/?p=loadbook&book=8Google Scholar
  24. F. Schwabl, Statistische Mechanik, 2nd edn. (Springer-Verlag, Berlin, 2004)Google Scholar
  25. K. Glaum, Ph.D. thesis (in German), Free University of Berlin, 2008; http://www.diss.fu-berlin.de/2008/117/indexe.htmlGoogle Scholar
  26. J.W. Negele, H. Orland, Quantum Many-Particle Systems (Perseus Publishing, Cambridge, 1998)Google Scholar
  27. C. Morette, Phys. Rev. 81, 848 (1951)Google Scholar
  28. B.S. DeWitt, Theory of Dynamical Groups and Fields (Gordon and Breach, New York, 1965)Google Scholar
  29. V.I. Yukalov, R. Graham, Phys. Rev. A 75, 023619 (2007)Google Scholar
  30. J.E. Robinson, Phys. Rev. 83, 678 (1951)Google Scholar
  31. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, 5th edn. (Academic Press, New York, 1994)Google Scholar
  32. H. Kleinert, V. Schulte-Frohlinde, Critical Properties ofφ4 -Theories (World Scientific, Singapore, 2001)Google Scholar
  33. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 3rd edn. (Oxford University Press, Oxford, 1996)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Arnold Sommerfeld Center for Theoretical Physics, Fakultät für Physik, Ludwig-Maximilians-Universität MünchenMünchenGermany
  2. 2.Universität Duisburg-EssenDuisburgGermany

Personalised recommendations