Advertisement

The European Physical Journal B

, Volume 68, Issue 3, pp 453–455 | Cite as

On the critical point of an interacting two-dimensional trapped Bose gas

  • T. P. Simula
Article

Abstract

We consider a quantized vortex excitation in a two-dimensional, harmonically trapped Bose gas and derive an equation for the Berezinskii-Kosterlitz-Thouless transition temperature based on a simple free-energy argument. We relate the critical phase-space density at the transition to the ratio between the entropy gain and the corresponding cost in energy of creating a free vortex excitation in the system.

PACS

03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations 05.30.Jp Boson systems 67.85.De Dynamic properties of condensates; excitations, and superfluid flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.L. Berezinskii, Sov. Phys. JETP 32, 493 (1971); V.L. Berezinskii, Sov. Phys. JETP 34, 610 (1972)Google Scholar
  2. J.M. Kosterlitz, D.J. Thouless, J. Phys. C: Solid State Phys. 6, 1181 (1973)Google Scholar
  3. Z. Hadzibabic, Z. Krüger, M. Cheneau, B. Battelier, J. Dalibard, Nature 441, 1118 (2006)Google Scholar
  4. P. Krüger, Z. Hadzibabic, J. Dalibard, Phys. Rev. Lett. 99, 040402 (2007)Google Scholar
  5. P. Cladé, C. Ryu, A. Ramanathan, K. Helmerson, W.D. Phillips, e-print arXiv:0805.3519 Google Scholar
  6. T.P. Simula, P.B. Blakie, Phys. Rev. Lett. 96, 020404 (2006)Google Scholar
  7. T.P. Simula, M.J. Davis, P.B. Blakie, Phys. Rev. A 77, 023618 (2008)Google Scholar
  8. R.N. Bisset, M.J. Davis, T.P. Simula, P.B. Blakie, Phys. Rev. A (accepted); e-print arXiv:0804.0286 Google Scholar
  9. M. Holzmann, W. Krauth, Phys. Rev. Lett. 100, 190402 (2008)Google Scholar
  10. M. Holzmann, G. Baym, J.-P. Blaizot, F. Laloë, Proc. Natl. Acad. Sci. USA 104, 1476 (2007)Google Scholar
  11. L. Giorgetti, I. Carusotto, Y. Castin, Phys. Rev. A 76, 013613 (2007)Google Scholar
  12. M. Holzmann, W. Krauth, Europhys. Lett. 82, 30001 (2008)Google Scholar
  13. Z. Hadzibabic, Z. Krüger, M. Cheneau, S.P. Rath, J. Dalibard, New J. Phys. 10, 045006 (2008)Google Scholar
  14. R.N. Bisset, D. Baillie, P.B. Blakie, Phys. Rev. A 79, 013602 (2009)Google Scholar
  15. R.J. Donnelly, Vortices in Helium II (Cambridge University Press, Cambridge, 1991)Google Scholar
  16. D.R. Nelson, J.M. Kosterlitz, Phys. Rev. Lett. 39, 1201 (1977)Google Scholar
  17. N. Prokofev, O. Ruebenacker, B. Svistunov, Phys. Rev. Lett. 87, 270402 (2001)Google Scholar
  18. V. Bagnato, D. Kleppner, Phys. Rev. A 44, 7439 (1991)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • T. P. Simula
    • 1
  1. 1.Department of PhysicsOkayama UniversityOkayamaJapan

Personalised recommendations