Advertisement

The European Physical Journal B

, Volume 69, Issue 1, pp 51–57 | Cite as

Stochastic resonance phenomena in spin chains

Topical issue on Stochastic Resonance

Abstract

We discuss stochastic resonance-like effects in the context of coupled quantum spin systems. We focus here on an information-theoretic approach and analyze the steady state quantum correlations (entanglement) as well as the global correlations in the system when subject to different forms of local decoherence. In the presence of decay, it has been shown that the system displays quantum correlations only when the noise strength is above a certain threshold. We extend this result to the case of a Heisenberg XYZ exchange interaction and revise and clarify the mechanisms underlying this behaviour. In the presence of pure dephasing, we show that the system always remains separable in the steady state. When both types of noise are present, we show that the system can still exhibit entanglement for long times, provided that the pure dephasing rate is not too large.

PACS

03.65.Yz Decoherence; open systems; quantum statistical methods 03.67.Bg Entanglement production and manipulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Benzi, A. Sutera, A. Vulpiani, J. Phys. A 14, L453 (1981)Google Scholar
  2. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)Google Scholar
  3. T. Wellens, V. Shatokhin, A. Buchleitner, Rep. Prog. Phys. 67, 45 (2004)Google Scholar
  4. R. Löfstedt, S.N. Coppersmith, Phys. Rev. Lett. 72, 1947 (1994)Google Scholar
  5. M. Grifoni, P. Hänggi, Phys. Rev. Lett. 76, 1611 (1996)Google Scholar
  6. M. Grifoni, P. Hänggi, Phys. Rev. E 54, 1390 (1996)Google Scholar
  7. I. Goychuk, P. Hänggi, Phys. Rev. E 59, 5137 (1999)Google Scholar
  8. A. Buchleitner, R. Mantegna, Phys. Rev. Lett. 80, 3932 (1998)Google Scholar
  9. S.F. Huelga, M.B. Plenio, Phys. Rev. A 62, 052111 (2000)Google Scholar
  10. I. Goychuk, J. Casado-Pascual, M. Morillo, J. Lehmann, P. Hänggi, Phys. Rev. Lett. 97, 210601 (2006)Google Scholar
  11. D.E. Makarov, N. Makri, Phys. Rev. B 52, R2257 (1995)Google Scholar
  12. T. Wellens, A. Buchleitner, Phys. Rev. Lett. 84, 5118 (2000)Google Scholar
  13. L. Viola, E.M. Fortunato, S. Lloyd, C.H. Tseng, D.G. Cory, Phys. Rev. Lett. 84, 5466 (2000)Google Scholar
  14. See I. Goychuk, P. Hänggi, Adv. Phys. 54, 525 (2006); for a recent review discussing a broad class of stochastic resonance phenomenaGoogle Scholar
  15. For results concerning SR phenomena in classical arrays see, for instance, J.F. Lindner, B.K. Meadows, W.L. Ditto, M.E. Inchiosa, A.R. Bulsara, Phys. Rev. Lett. 75, 3 (1995); see also F. Marchesoni, L. Gammaitoni, A.R. Bulsara, Phys. Rev. Lett. 76, 2609 (1996); for array-enhancement effects, J.A. Acebrón, W.J. Rappel, A.R. Bulsara, Phys. Rev. E 67, 016210 (2003); for a description of cooperative effects, Z. Neda, Phys. Rev. E 51, 5315 (1995); for the study of SR in a classical Ising chainGoogle Scholar
  16. S.F Huelga, M.B. Plenio, Phys. Rev. Lett. 98, 170601 (2007)Google Scholar
  17. L. Henderson, V. Vedral, J. Phys. A: Math. Gen. 34, 6899 (2001); B. Schumacher, M.D. Westmoreland, Phys. Rev. A 74, 042305 (2006)Google Scholar
  18. I. Goychuk, P. Hänggi, New J. Phys. 1, 14 (1999)Google Scholar
  19. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998); for a recent pedagogical review on entanglement measures see M.B. Plenio, S. Virmani, Quant. Inf. Comp. 7, 1 (2007)Google Scholar
  20. M. Mohseni, P. Rebentrost, S. Lloyd, A. Aspuru-Guzik, J. Chem. Phys. 129, 174106 (2008); P. Rebentrost, M. Mohseni, A. Aspuru-Guzik, e-print arXiv:0806.4725; P. Rebentrost, M. Mohseni, I. Kassal, S. Lloyd, A. Aspuru-Guzik, e-print arXiv:0807.0929Google Scholar
  21. M.B. Plenio, S.F. Huelga, New J. Phys. 10, 113019 (2008); F. Caruso, A. Chin, A. Data, S.F. Huelga, M.B. Plenio, e-print arXiv:0901.4454Google Scholar
  22. A. Olaya-Castro, F.C. Lee, N.F. Johnson, Phys. Rev. B 78, 085115 (2008)Google Scholar
  23. See H. Lee, Y.C. Cheng, G.R. Flemin, Science 316, 1462 (2007); V.I. Prokhorenko, A.R. Holzwarth, F.R. Nowak, T.J. Aartsma, J. Phys. Chem. B 106, 9923 (2002); G.S. Engel, T.R. Calhoun, E.L. Read, T.K. Ahn, T. Mančal, Y.C. Cheng, R.E. Blankenship, G.R. Fleming, Nature 446, 782 (2007); I.P. Mercer, Y.C. El-Taha, N. Kajumba, J.P. Marangos, J.W.G. Tisch, M. Gabrielsen, R.J. Cogdell, E. Springate, E. Turcu, Phys. Rev. Lett. 102, 057402 (2009); for recent experimental results showing evidence of coherent dynamics in photosynthetic complexesGoogle Scholar
  24. C.P. Slichter, Principles of Magnetic Resonance, Springer Series in Solid-State Sciences (Springer, Berlin, 1990)Google Scholar
  25. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions (John Wiley & Sons, New York, 1992)Google Scholar
  26. A. Peres, Phys. Rev. Lett. 77, 1413 (1996); M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A 223, 1 (1997)Google Scholar
  27. M.B. Plenio, S.F. Huelga, Phys. Rev. Lett. 88, 197901 (2002)Google Scholar
  28. L. Hartmann, W. Dür, H.-J. Briegel, Phys. Rev. A. 74, 052304 (2006); L. Hartmann, W. Dür, H.-J. Briegel, New J. Phys. 9, 230 (2007)Google Scholar
  29. N. Lambert, R. Aguado, T. Brandes, Phys. Rev. B 75, 045340 (2007)Google Scholar
  30. L.D. Contreras-Pulido, R. Aguado, Phys. Rev. B 77, 155420 (2008)Google Scholar
  31. H. Spohn, Rev. Mod. Phys. 52, 569 (1980); see also A. Frigerio, Comm. Math. Phys. 63, 269 (1978)Google Scholar
  32. A. Shnirman, Y. Makhlin, G. Schön, Phys. Scr. T 102, 147 (2002)Google Scholar
  33. The exact form of the threshold is provided by the only real root of the polynomial: 20 480 r4 s12 + 4096 (r2 (-1 + 20 r2 + 205 r4)) s10 + 256 (-1 - 280 r2 - 7208 r4 - 64 560 r6 + 17 470 r8) s8 - 1792 (2 + 295 r2 + 10 634 r4 + 149 910 r6 + 764 420 r8 + 964 565 r10) s6 - 784 (24 + 2600 r2 + 97 542 r4 + 1 665 144 r6 + 13 511 368 r8 + 48 202 000 r10 + 59 489 675 r12) s4 - 5488 (2 + 35 r2)2 (2 + 115 r2 + 2122 r4 + 15 671 r6 + 50 168 r8 + 58 352 r10) - 2401 (2 + 43 r2 + 140 r4)4 = 0, for which it does not exist a general closed solutionGoogle Scholar
  34. C. Di Franco, M. Paternostro, D.I. Tsomokos, S.F. Huelga, Phys. Rev. A 77, 062337 (2008)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Quantum Physics Group, STRI, Department of Physics, Astronomy and MathematicsUniversity of HertfordshireHatfieldUK

Personalised recommendations