Advertisement

The European Physical Journal B

, Volume 68, Issue 2, pp 201–208 | Cite as

Quasiparticle properties of strongly correlated electron systems with itinerant metamagnetic behavior

  • J. Bauer
Open Access
Solid State and Materials

Abstract

A brief account of the zero temperature magnetic response of a system of strongly correlated electrons in strong magnetic field is given in terms of its quasiparticle properties. The scenario is based on the paramagnetic phase of the half-filled Hubbard model, and the calculations are carried out with the dynamical mean field theory (DMFT) together with the numerical renormalization group (NRG). As well known, in a certain parameter regime one finds a magnetic susceptibility which increases with the field strength. Here, we analyze this metamagnetic response based on Fermi liquid parameters, which can be calculated within the DMFT-NRG procedure. The results indicate that the metamagnetic response can be driven by field-induced effective mass enhancement. However, also the contribution due to quasiparticle interactions can play a significant role. We put our results in context with experimental studies of itinerant metamagnetic materials.

PACS

71.10.Fd Lattice fermion models 71.27.+a Strongly correlated electron systems; heavy fermions 71.30.+h Metal-insulator transitions and other electronic transitions 75.20.-g Diamagnetism, paramagnetism, and superparamagnetism 71.10.Ay Fermi-liquid theory and other phenomenological models 

References

  1. E. Wohlfahrt, P. Rhodes, Philos. Mag. 7, 1817 (1962)Google Scholar
  2. Y. Nishiyama, S. Hirooka, Phys. Rev. B 56, 7793 (1997)Google Scholar
  3. H. Satoh, F.J. Ohkawa, Phys. Rev. B 57, 5891 (1998)Google Scholar
  4. B. Binz, M. Sigrist, Europhys. Lett. 65, 816 (2004)Google Scholar
  5. C. Honerkamp, Phys. Rev. B 72, 115103 (2005)Google Scholar
  6. H. Yamase, A.A. Katanin, J. Phys. Soc. Jpn 76, 073706 (2007)Google Scholar
  7. D. Vollhardt, Rev. Mod. Phys. 56, 99 (1984)Google Scholar
  8. J. Spałek, P. Gopalan, Phys. Rev. Lett. 64, 2823 (1990)Google Scholar
  9. P. Korbel, J. Spałek, W. Wójcik, M. Acquarone, Phys. Rev. B 52, R2213 (1995)Google Scholar
  10. J. Spałek, P. Korbel, W. Wójcik, Phys. Rev. B 56, 971 (1997)Google Scholar
  11. L. Laloux, A. Georges, W. Krauth, Phys. Rev. B 50, 3092 (1994)Google Scholar
  12. G.S. Tripathi, Phys. Rev. B 52, 6522 (1995)Google Scholar
  13. A. Georges, G. Kotliar, W. Krauth, M. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)Google Scholar
  14. H.R. Krishna-murthy, J.W. Wilkins, K.G. Wilson, Phys. Rev. B 21, 1003 (1980)Google Scholar
  15. R. Bulla, T. Costi, T. Pruschke, Rev. Mod. Phys. 80, 395 (2008)Google Scholar
  16. J. Bauer, A.C. Hewson, Phys. Rev. B 76, 035118 (2007)Google Scholar
  17. A.C. Hewson, A. Oguri, D. Meyer, Eur. Phys. J. B 40, 177 (2004)Google Scholar
  18. A.C. Hewson, J. Bauer, W. Koller, Phys. Rev. B 73, 045117 (2006)Google Scholar
  19. J. Bauer, A.C. Hewson, Phys. Rev. B 76, 035119 (2007)Google Scholar
  20. W. Metzner, D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989)Google Scholar
  21. E. Müller-Hartmann, Z. Phys. B 74, 507 (1989)Google Scholar
  22. R. Peters, T. Pruschke, F.B. Anders, Phys. Rev. B 74, 245114 (2006)Google Scholar
  23. A. Weichselbaum, J. von Delft, Phys. Rev. Lett. 99, 076402 (2007)Google Scholar
  24. R. Bulla, A.C. Hewson, T. Pruschke, J. Phys.: Cond. Mat. 10, 8365 (1998)Google Scholar
  25. O. Buu et al., J. Low Temp. Phys. 110, 311 (1998)Google Scholar
  26. S. Misawa, Phys. Rev. Lett. 26, 1632 (1971)Google Scholar
  27. J. Bauer, A.C. Hewson, Eur. Phys. J. B 57, 235 (2007)Google Scholar
  28. J.M. Luttinger, Phys. Rev. 119, 1153 (1960)Google Scholar
  29. R. Micnas, J. Ranninger, S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990)Google Scholar
  30. M. Keller, W. Metzner, U. Schollwöck, Phys. Rev. Lett. 86, 4612 (2001)Google Scholar
  31. M. Capone, C. Castellani, M. Grilli, Phys. Rev. Lett. 88, 126403 (2002)Google Scholar
  32. C. Paulsen et al., J. Low Temp. Phys. 81, 317 (1990)Google Scholar
  33. J. Flouquet et al., Physica B 319, 251 (2002)Google Scholar
  34. H.P. van der Meulen et al., Phys. Rev. B 41, 9352 (1990)Google Scholar
  35. B. Lüthi, P. Thalmeier, G. Bruls, D. Weber, J. Magn. Magn. Mat. 90, 37 (1990)Google Scholar
  36. S.A. Grigera et al., Science 294, 329 (2001)Google Scholar
  37. R.S. Perry et al., J. Phys. Soc. Jpn 74, 1270 (2005)Google Scholar
  38. T. Sakakibara, T. Goto, K. Yoshimura, K. Fukamichi, J. Phys.: Condensed Matter 2, 3381 (1990)Google Scholar
  39. T. Goto et al., J. Appl. Phys. 76, 6682 (1994)Google Scholar
  40. F. Kagawa, T. Itou, K. Miyagawa, K. Kanoda, Phys. Rev. Lett. 93, 127001 (2004)Google Scholar
  41. M.C. Bennett et al., e-print arXiv:cond-mat/0812.1082 (unpublished)Google Scholar
  42. D. Meyer, W. Nolting, Phys. Rev. B 64, 052402 (2001)Google Scholar
  43. T. Saso, M. Itoh, Phys. Rev. B 53, 6877 (1996)Google Scholar
  44. Y. Ono, J. Phys. Soc. Jpn 67, 2197 (1998)Google Scholar
  45. D. Edwards, A.C.M. Green, Z. Phys. B 103, 243 (1997)Google Scholar

Copyright information

© The Author(s) 2009

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Max-Planck Institute for Solid State ResearchStuttgartGermany

Personalised recommendations