Advertisement

The European Physical Journal B

, Volume 68, Issue 2, pp 237–246 | Cite as

Statistical model for the effects of dephasing on transport properties of large samples

  • M. Zilly
  • O. UjsághyEmail author
  • D. E. Wolf
Mesoscopic and Nanoscale Systems

Abstract

We present a statistical model for the effects of dephasing on the transport properties of large devices. The physical picture is different from earlier models which assume that dephasing happens continuously throughout the sample, whereas we model the dephasing in a statistical sense, assuming a distribution of completely phase randomizing regions between which the transport is coherent and described by the nonequilibrium Green’s function method. Thus the sample is effectively divided into smaller parts making the numerical treatment more efficient. As a first application the conductances of ordered and disordered linear tight-binding chains are calculated and compared to the results of other phenomenological models in the literature.

PACS

72.10.Bg General formulation of transport theory 73.23.-b Electronic transport in mesoscopic systems 73.20.Fz Weak or Anderson localization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See e.g. S. Datta, Electronic transport in mesoscopic systems (Cambridge University Press, Cambridge, UK, 1997), and references thereinGoogle Scholar
  2. For a recent application cf. J.K. Viljas, F. Pauly, J.C. Cuevas, Phys. Rev. B 77, 155119 (2008)Google Scholar
  3. For a review, see A. Halbritter, L. Borda, A. Zawadowski, Advances in Physics 53, 939 (2004)Google Scholar
  4. S. Datta, J. Phys.: Condensed Matter 2, 8023 (1990)Google Scholar
  5. Y. Meir, N.S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992)Google Scholar
  6. S. Datta, Quantum Transport, Atom to Transistor (Cambridge University Press, Cambridge, UK, 2005)Google Scholar
  7. R. Golizadeh-Mojarad, S. Datta, Phys. Rev. B 75, 081301 (2007)Google Scholar
  8. M. Büttiker, Phys. Rev. B 33, 3020 (1986)Google Scholar
  9. J.L. D’Amato, H.M. Pastawski, Phys. Rev. B 41, 7411 (1990)Google Scholar
  10. K. Maschke, M. Schreiber, Phys. Rev. B 49, 2295 (1994)Google Scholar
  11. D. Roy, A. Dhar, Phys. Rev. B 75, 195110 (2007)Google Scholar
  12. M.G. Pala, G. Iannaccone, Phys. Rev. B 69, 235304 (2004)Google Scholar
  13. H. Zheng, Z. Wang, Q. Shi, X. Wang, J. Chen, Phys. Rev. B 74, 155323 (2006)Google Scholar
  14. C. Caroli, R. Combescot, P. Nozieres, D. Saint-James, J. Phys. C 4, 916 (1971)Google Scholar
  15. See e.g. Section 8.3 of reference Datta1, where the notation \(G_n=-\it{i}G^<\) is usedGoogle Scholar
  16. T.-S. Kim, S. Hershfield, Phys. Rev. B 65, 214526 (2002)Google Scholar
  17. D.J. Thouless, S. Kirkpatrick, J. Phys. C 14, 235 (1981)Google Scholar
  18. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials (Oxford University Press, Oxford, 1971)Google Scholar
  19. A.D. Stone, P.A. Lee, Phys. Rev. Lett. 54, 1196 (1985)Google Scholar
  20. M.Y. Azbel, A. Hartstein, D.P. DiVincenzo, Phys. Rev. Lett. 52, 1641 (1984)Google Scholar
  21. For a review, see I.S. Beloborodov, A.V. Lopatin, V.M. Vinokur, K.B. Efetov, Rev. Mod. Phys. 79, 469 (2007)Google Scholar
  22. See e.g. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C (Cambridge University Press, 1990)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Duisburg-Essen and CeNIDEDuisburgGermany
  2. 2.Department of Theoretical Physics and Condensed Matter Research Group of the Hungarian Academy of Sciences, Budapest University of Technology and EconomicsBudapestHungary

Personalised recommendations