The European Physical Journal B

, Volume 68, Issue 2, pp 277–281 | Cite as

Centrality measure of complex networks using biased random walks

  • S. Lee
  • S.-H. YookEmail author
  • Y. Kim
Interdisciplinary Physics


We propose a novel centrality measure based on the dynamical properties of a biased random walk to provide a general framework for the centrality of vertex and edge in scale-free networks (SFNs). The suggested centrality unifies various centralities such as betweenness centrality (BC), load centrality (LC) and random walk centrality (RWC) when the degree, k, is relatively large. The relation between our centrality and other centralities in SFNs is clearly shown by both analytic and numerical methods. Regarding to the edge centrality, there have been few established studies in complex networks. Thus, we also provide a systematic analysis for the edge BC (LC) in SFNs and show that the distribution of edge BC satisfies a power-law. Furthermore we also show that the suggested centrality measures on real networks work very well as on the SFNs.


89.75.Hc Networks and genealogical trees 05.40.Fb Random walks and Levy flights 89.20.-a Interdisciplinary applications of physics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. T. Nishikawa, A.E. Motter, Y.-C. Lai, F.C. Hoppensteadt, Phys. Rev. Lett. 91, 014101 (2003); S.H. Yook, H. Meyer-Ortamanns, Physica A 371, 781 (2006)Google Scholar
  2. J. Goldenberg, Y. Shavitt, E. Shir, S. Solomon, Nature Phys. 1, 185 (2005)Google Scholar
  3. J.-P. Onnela, J. Saramäki, J. Hyvönen, S. Szabó, D. Lazer, K. Kaski, J. Kertész, A.-L. Barabási, Proc. Nat. Acad. Sci. 104, 7332 (2007), and references thereinGoogle Scholar
  4. J.G. Restrepo, E. Ott, B.R. Hunt, Phys. Rev. Lett. 97, 094102 (2006)Google Scholar
  5. S. Lee, S.H. Yook, Y. Kim, Phys. Rev. E 74, 046118 (2006)Google Scholar
  6. S. Kwon, S. Yoon, Y. Kim, Phys. Rev. E 77, 066105 (2008)Google Scholar
  7. S. Sreenivasan, R. Cohen, E. Lopez, Z. Toroczkai, H.E. Stanley, Phys. Rev. E 75, 036105 (2007)Google Scholar
  8. R. Albert, H. Jeong, A.-L. Barabási, Nature 406, 378 (2000)Google Scholar
  9. H. Jeong, S. Mason, A.-L. Barabási, Z.N. Oltvai, Nature 411, 41 (2001); H. Jeong, Z.N. Oltvai, A.-L. Barabási, ComplexUs 1, 19 (2003)Google Scholar
  10. H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, A.-L. Barabási, Nature 407, 651 (2000); S.-H. Yook, Z.N. Oltvai, A.-L. Barabási, Porteomics 4, 928 (2004)Google Scholar
  11. R.J. Williams, N.D. Martinez, Nature 404, 180 (2000); J. Camacho, R. Guimerà, L.A.N. Amaral, Phys. Rev. E 65, 030901(R) (2002)Google Scholar
  12. K.H.O. Deane, S. Spieker, C.E. Clarke, Cochrane Database of Systematic Reviews, 4 (2004)Google Scholar
  13. L.C. Freeman, Sociometry 40, 35 (1977); P.F. Bonacich, American J. Sociology 92, 1170 (1987)Google Scholar
  14. K.-I. Goh, B. Kahng, D. Kim, Phys. Rev. Lett. 87, 278701 (2001)Google Scholar
  15. K.-I. Goh, E.S. Oh, H. Jeong, B. Kahng, D. Kim, Proc. Nat. Acad. Sci. 99, 12583 (2002)Google Scholar
  16. A. Vázquez, R. Pastor-Satorras, A. Vespignani, Phys. Rev. E 65, 066130 (2002)Google Scholar
  17. M. Barthélemy, Phys. Rev. Lett. 91, 189803 (2003); M. Barthélemy, Eur. Phys. J. B 38, 163 (2004)Google Scholar
  18. M.E.J. Newman, Social Networks 27, 39 (2005)Google Scholar
  19. E. Estrada, J.A. Rodríguez-Velázquez, Phys. Rev. E 71, 056103 (2005); E. Estrada, J.A. Rodríguez-Velázquez, Phys. Rev. E 72, 046105 (2005)Google Scholar
  20. E. Estrada, N. Hatano, Chem. Phys. Lett. 439, 247 (2007)Google Scholar
  21. N. Perra, S. Fortunato, Phys. Rev. E 78, 036107 (2008)Google Scholar
  22. J.D. Noh, H. Rieger, Phys. Rev. Lett. 92, 118701 (2004)Google Scholar
  23. L.C. Freeman, S.P. Borgatti, D.R. White, Social Networks 13, 141 (1991)Google Scholar
  24. S.H. Yook, H. Jeong, A.-L. Barabási, Y. Tu, Phys. Rev. Lett. 86, 5835 (2001); A. Barrat, M. Barthélemy, R. Pastor-Satorras, A. Vespignani, Proc. Nat. Acad. Sci. 101, 3747 (2004)Google Scholar
  25. J.-P. Onnela, J. Saramäkl, J. Hyvönen, G. Szabó, M.A. de Menezes, K. Kaski, A.-L. Barabási, J. Kertéz, New J. Physics 9, 179 (2007)Google Scholar
  26. S. Fortunato, V. Latora, M. Marchiori, Phys. Rev. E 70, 056104 (2004)Google Scholar
  27. C. Song, S. Havlin, H.A. Makse, Nat. Phys. 2, 275 (2006)Google Scholar
  28. For 2<γ< 2.5, we find that the numerically obtained α and βv satisfy the theoretical expectation (Eq. ([SEE TEXT])) when we use δv =2.01 Barthelemy rather than δv=2.2 Goh2001. For γ> 2.5, the numerically obtained α and βv satisfy equation ([SEE TEXT]) with δv =2.2, because δv approaches to 2.2 Goh2001, BarthelemyGoogle Scholar
  29. P. Uetz et al., Nature 403, 623 (2000)Google Scholar
  30. Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Physics and Research Institute for Basic Sciences, Kyung Hee UniversitySeoulKorea

Personalised recommendations