Advertisement

The European Physical Journal B

, Volume 68, Issue 2, pp 209–219 | Cite as

Non-Markovian disentanglement dynamics of two-qubit system in common environment

  • X.-F. CaoEmail author
  • H. Zheng
Mesoscopic and Nanoscale Systems

Abstract

The disentanglement of a pair of identical qubits, sharing a dissipative environment, is investigated. We proposed a new non-Markovian analytical method to study the model, which takes into account the counter-rotating term in the qubit-environment interaction. It is shown that when the qubits sufficiently separate from each other, the model is equivalent to each subsystem interacts independently with its local environment. The effects of the dissipative environment and the interqubit distance on the time evolution of the concurrence for four bell states are examined in detail. And point out some new features appearing in the case of the two qubits close together.

PACS

62.25.-g Mechanical properties of nanoscale systems 63.20.Kd Phonon-electron interactions 03.65.Ud Entanglement and quantum nonlocality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Barenco, A. Ekert, J. Mod. Opt. 42, 1253 (1995)Google Scholar
  2. S.F. Pereira, Z.Y. Ou, H.J. Kimble, Phys. Rev. A 62, 042311 (2000)Google Scholar
  3. A. Barenco, Contemp. Phys. 37, 375 (1996)Google Scholar
  4. L.K. Grover, Phys. Rev. Lett. 79, 325 (1997)Google Scholar
  5. M. Ikram, Fu-li Li, M.S. Zubairy, Phys. Rev. A 75, 062336 (2007)Google Scholar
  6. K.-L. Liu, Hsi-Sheng Goan, Phys. Rev. A 76, 022312 (2007)Google Scholar
  7. U. Akram, Z. Ficek, S. Swain, Phys. Rev. A 62, 013413 (2000)Google Scholar
  8. F.M. Tert, Andre R.R. Carvalho, M. Kus, A. Buchleitner, Phys. Rep. 415, 207 (2005)Google Scholar
  9. W.H. Zurek, Phys. Rev. D 26, 1862 (1982)Google Scholar
  10. T. Yu, J.H. Eberly, Phys. Rev. Lett. 97, 140403 (2006)Google Scholar
  11. T. Yu, J.H. Eberly, Phys. Rev. Lett. 93, 140404 (2004)Google Scholar
  12. M.P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S.P. Walborn, P.H. Souto Ribeiro, L. Davidovich, Science 316, 579 (2007)Google Scholar
  13. F. Benatti, R. Floreanini, M. Piani, Phys. Rev. Lett. 91, 070402 (2003)Google Scholar
  14. D. Braun, Phys. Rev. Lett. 89, 277901 (2002)Google Scholar
  15. Z. Ficek, R. Tanaś, Phys. Rep. 372, 369 (2002)Google Scholar
  16. U. Weiss, Quantum Dissipative System (World Scientific, Singapore, 1993)Google Scholar
  17. A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher, A. Garg, W. Zwerger, Rev. Mod. Phys. 59, 1 (1987)Google Scholar
  18. Z.-J. Wu, Ka-Di Zhu, X.-Z. Yuan, Yi-Wen Jiang, H. Zheng, Phys. Rev. B 71, 205323 (2005)Google Scholar
  19. J.T. Woo, J.H. Kim, T.W. Kim, J.D. Song, Y.J. Park, Phys. Rev. B 72, 205320 (2005)Google Scholar
  20. S. Vorojtsov, E.R. Mucciolo, H.U. Baranger, Phys. Rev. B 71, 205322 (2005)Google Scholar
  21. H. Zheng, Eur. Phys. J. B 38, 559 (2004); F. Guinea, V. Hakim, A. Muramatsu, Phys. Rev. B 32, 4410 (1985)Google Scholar
  22. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, UK, 1997)Google Scholar
  23. Xiufeng Cao, Hang Zheng, Phys. Rev. A 77, 022320 (2008)Google Scholar
  24. W.H. Louisell, Statistical Properties of Radiation (Wiley, New York, 1973)Google Scholar
  25. S. Hill, W.K. Wootters, Phys. Rev. Lett. 78, 5022 (1997)Google Scholar
  26. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)Google Scholar
  27. T. Hayashi, T. Fujisawa, H.D. Cheong, Y.H. Jeong, Y. Hirayama, Phys. Rev. Lett. 91, 226804 (2003)Google Scholar
  28. G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, A. Zeilinger, Phys. Rev. Lett. 81, 5039 (1998)Google Scholar
  29. T. Brandes, T. Vorrath, Phys. Rev. B 66, 075341 (2002)Google Scholar
  30. Z. Ficek, R. Tanaś, Phys. Rev. A 74, 024304 (2006)Google Scholar
  31. R.H. Dicke, Phys. Rev. 93, 99 (1954)Google Scholar
  32. H.T. Dung, K. Ujihara, Phys. Rev. A 59, 2524 (1999)Google Scholar
  33. Z. Ficek, R. Tanaś, Phys. Rev. A 77, 054301 (2008); S. Maniscalco, F. Francica, R.L. Zaffino, N. Lo Gullo, F. Plastina, Phys. Rev. Lett. 100, 090503 (2008)Google Scholar
  34. G.D. Mahan, Many-Partical physics (World Scientific, New York, 1990)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Physics and Institute of Theophysical Physics and Astrophysics, Xiamen UniversityXiamenP.R. China
  2. 2.Department of PhysicsShanghai Jiao Tong UniversityShanghaiP.R. China

Personalised recommendations