The European Physical Journal B

, Volume 70, Issue 2, pp 229–241 | Cite as

Derivation of a fundamental diagram for urban traffic flow

Interdisciplinary Physics

Abstract

Despite the importance of urban traffic flows, there are only a few theoretical approaches to determine fundamental relationships between macroscopic traffic variables such as the traffic density, the utilization, the average velocity, and the travel time. In the past, empirical measurements have primarily been described by fit curves. Here, we derive expected fundamental relationships from a model of traffic flows at intersections, which suggest that the recently measured fundamental diagrams for urban flows can be systematically understood. In particular, this allows one to derive the average travel time and the average vehicle speed as a function of the utilization and/or the average number of delayed vehicles.

PACS

89.40.Bb Land transportation 47.10.ab Conservation laws and constitutive relations 51.10.+y Kinetic and transport theory of gases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.C. Gazis, Traffic Theory (Kluwer Academic, Boston, 2002)Google Scholar
  2. J. Esser, M. Schreckenberg, Int. J. Mod. Phys. B 8, 1025 (1997)Google Scholar
  3. P.M. Simon, K. Nagel, Phys. Rev. E 58, 1286 (1998)Google Scholar
  4. K. Nagel, Multi-Agent Transportation Simulations, see http://www2.tu-berlin.de/fb10/ISS/FG4/archive/sim-archive/publications/book/Google Scholar
  5. M. Hilliges, W. Weidlich, Transpn. Res. B 29, 407 (1995)Google Scholar
  6. D. Helbing, J. Siegmeier, S. Lämmer, Networks and Heterogeneous Media 2, (2007)Google Scholar
  7. M. Cremer, J. Ludwig, Math. Comput. Simul. 28, 297ff (1986)Google Scholar
  8. C.F. Daganzo, Transpn. Res. B 29, 79 (1995)Google Scholar
  9. T. Nagatani, Phys. Rev. E 48, 3290 (1993)Google Scholar
  10. D. Chowdhury, A. Schadschneider, Phys. Rev. E 59, R1311 (1999)Google Scholar
  11. O. Biham, A.A. Middleton, D. Levine, Phys. Rev. A 46, R6124 (1992)Google Scholar
  12. J.-F. Zheng, Z.-Y. Gao, X.-M. Zhao, Phys. Stat. Mech. Appl. 385, 700 (2007)Google Scholar
  13. N.A. Irwin, M. Dodd, H.G. Von Cube, Highway Research Board Bulletin 347, 258 (1961)Google Scholar
  14. R.J. Smock, Highway Research Board Bulletin 347, 60 (1962)Google Scholar
  15. W.W. Mosher, Highway Research Record 6, 41 (1963)Google Scholar
  16. Bureau of Public Roads, Traffic Assignment Manual (US Dept. of Commerce, Urban Planning Division, Washington, D.C., 1964)Google Scholar
  17. T.J. Soltmann, Highway Research Record 114, 122 (1965)Google Scholar
  18. K.B. Davidson, in Proceedings of the 3rd ARRB Conference, Part 1 (Australian Road Research Board, Melbourne, 1966), pp. 183–194Google Scholar
  19. R.J. Smeed, Traffic Engineering and Control 8, 455 (1966)Google Scholar
  20. K.R. Overgaard, Traffic Quarterly, 197 (1967)Google Scholar
  21. J.M. Thomson, Traffic Engineering and Control 8, 721 (1967)Google Scholar
  22. J.G. Wardrop, Traffic Engineering and Control 9, 528 (1968)Google Scholar
  23. Y. Zahavi, Traffic Engineering and Control 14, (1972)Google Scholar
  24. R. Akcelik, Australian Road Research 21, 49 (1991)Google Scholar
  25. K.M. Lum, H.S.L. Fan, S.H. Lam, P. Olszewski, J. Transpn. Eng. 124, 213 (1998)Google Scholar
  26. H.M. Zhang, Transpn. Res. Rec. 1676, 109 (1999)Google Scholar
  27. H. Tu, Monitoring Travel Time Reliability on Freeways, Ph.D. thesis, Delft University of Technology, (2008)Google Scholar
  28. C.F. Daganzo, Transport. Res. B 41, 49 (2007)Google Scholar
  29. N. Geroliminis, C.F. Daganzo, Transpn. Res. B 42, 759 (2008)Google Scholar
  30. N. Geroliminis, C.F. Daganzo, Macroscopic modeling of traffic in cities, TRB 86th Annual Meeting, Paper #07-0413, Washington D.C. (2007)Google Scholar
  31. C.F. Daganzo, N. Geroliminis, An analytical approximation for the macroscopic fundamental diagram of urban traffic, accepted for publication (2008)Google Scholar
  32. J.W. Godfrey, Traffic Engineering and Control 11, 323 (1969)Google Scholar
  33. R. Herman, I. Prigogine, Science 204, 148 (1979)Google Scholar
  34. R. Herman, S. Ardekani, Transportation Science 18, 101 (1984)Google Scholar
  35. M. Eichler, C.F. Daganzo, Transportation Research B 40, 731 (2006)Google Scholar
  36. D. Helbing, Rev. Mod. Phys. 73, 1067 (2001)Google Scholar
  37. D. Helbing, M. Treiber, A. Kesting, M. Schönhof, Theoretical vs. empirical classification and prediction of congested traffic states, Eur. Phys. J. B, accepted for publication (2009), see e-print http://arxiv.org/abs/0903.0929 Google Scholar
  38. G.B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974) Google Scholar
  39. R. Hall, Queueing Methods for Service and Manufacturing (Prentice Hall, Upper Saddle River, NJ, 1991)Google Scholar
  40. D. Helbing, J. Phys. A: Math. Gen 36, L593 (2003)Google Scholar
  41. D. Helbing, A. Mazloumian, Operation regimes and slower-is-faster effect in the control of traffic intersections, submitted (2008), see e-printhttp://arxiv.org/abs/0903.0926 Google Scholar
  42. D. Helbing, T. Seidel, S. Lämmer, K. Peters, in Econophysics and Sociophysics, edited by B.K. Chakrabarti, A. Chakraborti, A. Chatterjee (Wiley, Weinheim, 2006), p. 552Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.ETH Zurich, UNO D11, Universitätstr. 41ZurichSwitzerland

Personalised recommendations