The European Physical Journal B

, Volume 68, Issue 2, pp 261–275 | Cite as

Public transport networks: empirical analysis and modeling

  • C. von Ferber
  • T. Holovatch
  • Yu. HolovatchEmail author
  • V. Palchykov
Interdisciplinary Physics


Public transport networks of fourteen cities of so far unexplored network size are analyzed in standardized graph representations: the simple graph of the network map, the bipartite graph of routes and stations, and both one mode projections of the latter. Special attention is paid to the inter-relations and spatial embedding of transport routes. This systematic approach reveals rich behavior beyond that of the ubiquitous scale-free complex network. We find strong evidence for structures in PTNs that are counter-intuitive and need to be explained, among these a pronounced diversity in the expression of typical network characteristics within the present sample of cities, a surprising geometrical behavior with respect to the two-dimensional geographical embedding and an unexpected attraction between transport routes. A simple model based on these observations reproduces many of the identified PTN properties by growing networks of attractive self-avoiding walks.


02.50.-r Probability theory, stochastic processes, and statistics 07.05.Rm Data presentation and visualization: algorithms and implementation 89.75.Hc Networks and genealogical trees 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)Google Scholar
  2. S.N. Dorogovtsev, J.F.F. Mendes, Adv. Phys. 51, 1079 (2002)Google Scholar
  3. M.E.J. Newman, SIAM Rev. 45, 167 (2003)Google Scholar
  4. S.N. Dorogovtsev, S.N. Mendes, Evolution of Networks (Oxford University Press, Oxford, 2003)Google Scholar
  5. Yu. Holovatch, O. Olemskoi, C. von Ferber, T. Holovatch, O. Mryglod, I. Olemskoi, V. Palchykov, J. Phys. Stud. 10, 247 (2006)Google Scholar
  6. L.A.N. Amaral, A. Scala, M. Barthélémy, H.E. Stanley, Proc. Natl. Acad. Sci. USA 97, 11149 (2000)Google Scholar
  7. R. Guimera, L.A.N. Amaral, Eur. Phys. J. B 38, 381 (2004)Google Scholar
  8. R. Guimera, S. Mossa, A. Turtschi, L.A.N. Amaral, Proc. Nat. Acad. Sci. USA 102, 7794 (2005)Google Scholar
  9. A. Barrat, M. Barthélemy, R. Pastor-Satorras, A. Vespignani, Proc. Nat. Acad. Sci. USA 101, 3747 (2004)Google Scholar
  10. L.-P. Chi, R. Wang, H. Su, X.-P. Xu, J.-S. Zhao, W. Li, X. Cai, Chin. Phys. Lett. 20, 1393 (2003)Google Scholar
  11. Y. He, X. Zhu, D.-R. He, Int. J. Mod. Phys. B 18, 2595 (2004)Google Scholar
  12. W. Li, X. Cai, Phys. Rev. E 69, 046106 (2004)Google Scholar
  13. W. Li, Q.A. Wang, L. Nivanen, A. Le Méhauté, Physica A 368, 262 (2006)Google Scholar
  14. P. Sen, S. Dasgupta, A. Chatterjee, P.A. Sreeram, G. Mukherjee, S.S. Manna, Phys. Rev. E 67, 036106 (2003)Google Scholar
  15. P. Crucitti, V. Latora, M. Marchiori, Physica A 338, 92 (2004)Google Scholar
  16. R. Albert, I. Albert, G.L. Nakarado, Phys. Rev. E 69, 025103 (2004)Google Scholar
  17. M. Marchiori, V. Latora, Physica A 285, 539 (2000)Google Scholar
  18. V. Latora, M. Marchiori, Phys. Rev. Lett. 87, 198701 (2001)Google Scholar
  19. V. Latora, M. Marchiori, Physica A 314, 109 (2002)Google Scholar
  20. K.A. Seaton, L.M. Hackett, Physica A 339, 635 (2004)Google Scholar
  21. C. von Ferber, Yu. Holovatch, V. Palchykov, Condens. Matter Phys. 8, 225 (2005), e-print arXiv:cond-mat/ 0501296 Google Scholar
  22. J. Sienkiewicz, J.A. Holyst, Phys. Rev. E 72, 046127 (2005), e-print arXiv:physics/0506074; J. Sienkiewicz, J.A. Holyst, Acta Phys. Polonica B 36, 1771 (2005)Google Scholar
  23. P. Angeloudis, D. Fisk, Physica A 367, 553 (2006)Google Scholar
  24. P.-P. Zhang, K. Chen, Y. He, T. Zhou, B.-B. Su, Y. Jin, H. Chang, Y.-P. Zhou, L.-C. Sun, B.-H. Wang, D.-R. He, Physica A 360, 599 (2006)Google Scholar
  25. C. von Ferber, T. Holovatch, Yu. Holovatch, V. Palchykov, Physica A 380, 585 (2007)Google Scholar
  26. X. Xu, J. Hu, F. Liu, L. Liu, Physica A 374, 441 (2007)Google Scholar
  27. H. Chang, B.-B. Su, Y.-P. Zhou, D.-R. He, Physica A 383, 687 (2007)Google Scholar
  28. C. von Ferber, T. Holovatch, Yu. Holovatch, V. Palchykov, in Traffic and Granular Flow ’07, edited by C. Appert-Rolland, F. Chevoir et al. (Springer, 2009), e-print arXiv:0709.3203 Google Scholar
  29. C. von Ferber, T. Holovatch, Yu. Holovatch, in Traffic and Granular Flow ’07, edited by C. Appert-Rolland, F. Chevoir et al. (Springer, 2009), e-print arXiv:0709.3206 Google Scholar
  30. For links see http://www.apta.comGoogle Scholar
  31. Due to an updated database numbers may slightly differ from those given in Ferber07aGoogle Scholar
  32. C. von Ferber, T. Holovatch, Yu. Holovatch, V. Palchykov, e-print arXiv:0803.3514v1 Google Scholar
  33. J.-L. Guillaume, M. Latapy, Physica A 371, 795 (2006)Google Scholar
  34. P. Erdös, A. Rényi, Publ. Math. (Debrecen) 6, 290 (1959); P. Erdös, A. Rényi, Publ. Math. Inst. Hung. Acad. Sci. 5, 17 (1960); P. Erdös, A. Rényi, Bull. Inst. Int. Stat. 38, 343 (1961)Google Scholar
  35. B. Bollobás, Random Graphs (Academic Press, London, 1985)Google Scholar
  36. R. Cohen, D. ben-Avraham, S. Havlin, Phys. Rev. E 66, 036113 (2002)Google Scholar
  37. H.A. Simon, Biometrica 42, 425 (1955)Google Scholar
  38. D. de S. Price, J. Amer. Soc. Inform. Sci. 27, 292 (1976)Google Scholar
  39. A.-L. Barabási, R. Albert, Science 286, 509 (1999); A.-L. Barabási, R. Albert, H. Jeong, Physica A 272, 173 (1999)Google Scholar
  40. R.F. i Cancho, R.V. Solé, e-print arXiv:cond-mat/ 0111222; S. Valverde, R.F. i Cancho, R.V. Solé, Europhys. Lett. 60, 512 (2002); R.F. i Cancho, R.V. Solé, in Statistical mechanics of Complex Networks, edited by R. Pastor-Satorras, M. Rubi, A. Diaz-Guilera, Lecture Notes in Physics (Springer, Berlin, 2003), Vol. 625, p. 114Google Scholar
  41. M.T. Gastner, M.E.J. Newman, Eur. Phys. J. B 49, 247 (2006)Google Scholar
  42. N. Mathias, V. Gopal, Phys. Rev. E 63, 021117 (2001)Google Scholar
  43. R.F. i Cancho, R.V. Solé, Proc. Natl. Acad. Sci. USA 100, 788 (2003); R.F. i Cancho, Physica A 345, 275 (2005)Google Scholar
  44. M.E.J. Newman, Phys. Rev. Lett. 89, 208701 (2002)Google Scholar
  45. M.E.J. Newman, Phys. Rev. E 67, 026126 (2003)Google Scholar
  46. J.A. Holyst, J. Sienkiewicz, A. Fronczak, P. Fronczak, K. Suchecki, Phys. Rev. E 72, 026108 (2005)Google Scholar
  47. A. Fronczak, P. Fronczak, J.A. Holyst, Phys. Rev. E 68, 046126 (2003)Google Scholar
  48. S.N. Dorogovtsev, J.F.F. Mendes, J.G. Olveira, Phys. Rev. E 73, 056122 (2006)Google Scholar
  49. U. Brandes, J. Math. Sociology 25, 163 (2001)Google Scholar
  50. G. Sabidussi, Psychometrika 31, 581 (1966)Google Scholar
  51. P. Hage, F. Harary, Social Networks 17, 57 (1995)Google Scholar
  52. A. Shimbel, Bull. Math. Biophys. 15, 501 (1953)Google Scholar
  53. L.C. Freeman, Sociometry 40, 35 (1977)Google Scholar
  54. L. Benguigui, J. Phys. I France 2, 385 (1992)Google Scholar
  55. Maps provided by http://www.fahrinfo-berlin/StadtplanGoogle Scholar
  56. Geocoding application on Scholar
  57. B. Nienhuis, Phys. Rev. Lett. 49, 1062 (1982)Google Scholar
  58. M.E.J. Newman, S.H. Strogatz, D.J. Watts, Phys. Rev. E 64, 026118 (2001)Google Scholar
  59. Z. Liu, Y.-C. Lai, N. Ye, P. Dasgupta, Phys. Lett. A 303, 337 (2002)Google Scholar
  60. M.E.J. Newman, Phys. Rev. E 64, 016131 (2001)Google Scholar
  61. X. Li, G. Chen, Physica A 328, 274 (2003)Google Scholar
  62. J.J. Ramasco, S.N. Dorogovtsev, R. Pastor-Satorras, Phys. Rev. E 70, 036106 (2004)Google Scholar
  63. A. Cardillo, S. Scellato, V. Latora, S. Porta, Phys. Rev. E 73, 066107 (2006)Google Scholar
  64. D. Volchenkov, P. Blanchard, Phys. Rev. E 75, 026104; D. Volchenkov, Condens. Matter Phys. 11, 331 (2008)Google Scholar
  65. A.B. Harris, Z. Phys. B 49, 347 (1983); Y. Kim, J. Phys. C 16, 1345 (1983); V. Blavats’ka, C. von Ferber, Yu. Holovatch, Phys. Rev. E 64, 041102 (2001); C. von Ferber, V. Blavats’ka, R. Folk, Yu. Holovatch, Phys. Rev. E 70, 035104(R) (2004)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • C. von Ferber
    • 1
    • 2
  • T. Holovatch
    • 1
    • 3
  • Yu. Holovatch
    • 4
    • 5
    Email author
  • V. Palchykov
    • 4
  1. 1.Applied Mathematics Research Centre, Coventry UniversityCoventryUK
  2. 2.Physikalisches Institut, Universität FreiburgFreiburgGermany
  3. 3.Laboratoire de Physique des Matériaux, Université Henri PoincaréVandœuvre les Nancy CedexFrance
  4. 4.Institute for Condensed Matter Physics, National Academy of Sciences of UkraineLvivUkraine
  5. 5.Institut für Theoretische Physik, Johannes Kepler Universität LinzLinzAustria

Personalised recommendations