The European Physical Journal B

, Volume 68, Issue 2, pp 247–251 | Cite as

An evolving network model in polymer melts with community structures

  • J. ZhangEmail author
  • H. Huang
Statistical and Nonlinear Physics


In order to describe the entangled network structure in polymer melts visually, we propose an evolving network model with community structure. This network model grows according to the inner-community and inter-community preferential mechanisms of both community sizes and node degrees. Numerical simulation results indicate that the cumulative distribution of community size and node degree distribution follow power-law distributions P(S≥s)∼s and P(k)∼k respectively, with the exponents of υ≥1 and \(\gamma \in [0,+\infty)\).


89.75.Da Systems obeying scaling laws 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. S.H. Strogatz, Nature (London) 410, 268 (2001)Google Scholar
  2. R. Albert, A.L. Barabási, Rev. Mod. Phys. 74, 47 (2002)Google Scholar
  3. S.N. Dorogovtsev, J.F.F. Mendes, Adv. Phys. 51, 1079 (2002)Google Scholar
  4. M.E.J. Newman, SIAM Rev. 45, 167 (2003)Google Scholar
  5. L.A.N. Amaral, J.M. Ottino, Eur. Phys. J. B 38, 147 (2004)Google Scholar
  6. M.C. González, A.O. Sousa, H.J. Herrmann, Eur. Phys. J. B 49, 253 (2006)Google Scholar
  7. X.F. Wang, G. Chen, IEEE Circuits Syst. Mag. 3, 6 (2003)Google Scholar
  8. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)Google Scholar
  9. A.L. Barabási, R. Albert, Science 286, 509 (1999)Google Scholar
  10. M. Girvan, M.E.J. Newman, Proc. Natl. Acad. Sci. USA 99, 7821 (2002)Google Scholar
  11. M.E.J. Newman, M. Girvan, Phys. Rev. E 69, 026113 (2004)Google Scholar
  12. M.E.J. Newman, Phys. Rev. E 69, 066133 (2004)Google Scholar
  13. F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, D. Parisi, Proc. Natl. Acad. Sci. USA 101, 2658 (2004)Google Scholar
  14. A. Clauset, M.E.J. Newman, C. Moore, Phys. Rev. E 70, 066111 (2004)Google Scholar
  15. G. Palla, I. Dere’nyi, I. Farkas, T. Vicsek, Nature 435, 814 (2005)Google Scholar
  16. M. Kimura, K. Saito, N. Ueda, Neural Networks 17, 975 (2004)Google Scholar
  17. C. Li, P.K. Maini, J. Phys. A 38, 9741 (2005)Google Scholar
  18. Z. Xie, X. Li, X. Wang, Physica A 384, 725 (2007)Google Scholar
  19. P. Pollner, G. Palla, T. Vicsek, Europhys. Lett. 73, 478 (2006)Google Scholar
  20. R.B. Bird, J.M. Wiest, Annual Revs. Fluid Mechanics 27, 169 (1995)Google Scholar
  21. R.B. Bird, O. Hassager, R.C. Armstrong, Rheologica Acta 13, 645 (2005)Google Scholar
  22. J. Zhang, J.P. Qu, Iranian Polymer J. 14, 609 (2005)Google Scholar
  23. J. Zhang, International J. Nonlinear Sciences and Numerical Simulation 5, 37 (2004)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Applied Mathematics, College of ScienceDonghua UniversityShanghaiP.R. China

Personalised recommendations