Advertisement

Time-varying irregularities in multiple trial spike data

  • K. FujiwaraEmail author
  • K. Aihara
Interdisciplinary Physics

Abstract

The measurement of neuronal firing rates has been a standard methodology for characterizing properties of neurons. The peri-stimulus time histogram (PSTH) is primarily used for visualizing changes of firing rates in relation to an external stimulus or an event. On the other hand, modulation of other statistics such as distribution and patterns of interspike intervals can be an important index for analysis of neuronal response and may provide insights into the neuronal codes. In particular, it is desirable to visualize the temporal modulation not only of the firing rates but also of the other statistics. In this study, we propose an analysis method for measuring irregularities in multiple trial spike data. The method calculates a local measure by extracting a short segment of data within a predefined time bin and connecting them each other. We compare the different data extraction methods in Poisson and gamma processes and show that our proposed method is effective for estimating the statistics of the irregular spike data.

PACS

87.19.L- Neuroscience 95.75.Wx Time series analysis, time variability 02.50.-r Probability theory, stochastic processes, and statistics 

References

  1. F. Rieke, D. Warland, R. de Ruyter van Steveninck, W. Bialek, Spikes: Exploring the neural code (MIT Press, Cambridge, MA. 1997)Google Scholar
  2. K. Aihara, I. Tokuda, Phys. Rev. E 66, 026212 (2002)Google Scholar
  3. M.N. Shadlen, W.T. Newsome, Curr. Opin. Neurobiol. 4, 569 (1994)Google Scholar
  4. W. Softky, Curr. Opin. Neurobiol. 5, 239 (1995)Google Scholar
  5. K. Fujiwara, H. Fujiwara, M. Tsukada, K. Aihara, Biosystems 90, 442 (2007)Google Scholar
  6. E. Salinas, T. Sejnowski, Nature Reviews Neuroscience 2, 539 (2001)Google Scholar
  7. A. Benucci, P.F.M.J. Verschure, P. König, Phys. Rev. E 68, 041905 (2003)Google Scholar
  8. B.D. Burns, A.C. Webb, Proc. Royal Soc. Lond. B. 194, 211 (1976)Google Scholar
  9. M.J. Chacron, B. Lindner, A. Longtin, Phys. Rev. Lett. 92, 080601 (2004)Google Scholar
  10. M.P. Nawrot, C. Boucsein, V.R. Molina, A. Riehle, A. Aertsen, S. Rotter, J. Neurosci. Methods 169, 374 (2008)Google Scholar
  11. N.J. Davey, P.H. Ellaway, R.B. Stein, J. Neurosci. Methods 17, 153 (1986)Google Scholar
  12. G. Foffani, K.A. Moxon, J. Neurosci. Methods 135, 107 (2004)Google Scholar
  13. S. Shinomoto, K. Shima, J. Tanji, Neural comput. 15, 2823 (2003)Google Scholar
  14. R.M. Davies, G.L. Gerstein, S.N. Baker, J. Neurophysiol. 96, 906 (2006)Google Scholar
  15. Y. Sakai, S. Funahashi, S. Shinomoto, Neural Networks 12, 1181 (1999)Google Scholar
  16. D.R. Cox, V. Isham, Point Processes (Chapman & Hall, 1980)Google Scholar
  17. R.K. Wong, D.A. Prince, J. Neurophysiol. 45, 86 (1981)Google Scholar
  18. D.S. Reich, J.D. Victor, B.W. Knight, T. Ozaki, E. Kaplan, J. Neurophysiol. 77, 2836 (1997)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Institute of Industrial Science, The University of TokyoTokyoJapan
  2. 2.ERATO Aihara Complexity Modelling Project, JSTTokyoJapan

Personalised recommendations