The European Physical Journal B

, Volume 69, Issue 1, pp 101–107 | Cite as

Control coherence resonance by noise recycling

Topical issue on Stochastic Resonance

Abstract

We study the effect of recycled noise, generated by the superposition of a primary Gaussian noise source with a second component of constant delay, in a parameter region below the threshold of supercritical Hopf bifurcation, by focussing on the performance of noise induced oscillations and coherence resonance. For fixed noise intensity, the amplitude and signal-to-noise ratio of the oscillation show periodic dependences on the delay time. The optimal noise intensity for the occurrence of coherence resonance also shows a periodic dependence on the delay. A theoretical analysis based on the stochastic normal form theory is presented, which qualitatively reproduces the simulation results with good agreement. This work presents a possible strategy for controlling noise induced oscillations and coherence resonance by deliberately adjusting the parameters of the recycled noise.

PACS

05.40.Ca Noise 05.45.-a Nonlinear dynamics and chaos 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Gammaltoni, P. Hänggi, P. Jung, F. Marchesoni. Rev. Mod. Phys. 70, 223 (1998); P. Hänggi, Chem. Phys. Chem. 3, 285 (2002)Google Scholar
  2. G. Hu, T. Ditzinger, C.Z. Ning, H. Haken, Phys. Rev. Lett. 71, 807 (1993)Google Scholar
  3. A. Pikovsky, J. Kurths, Phys. Rev. Lett. 78, 775 (1997)Google Scholar
  4. L.S. Tsimring, A. Pikovsky, Phys. Rev. Lett. 87, 250602 (2001); C. Zhou, J. Kurths, B. Hu, Phys. Rev. Lett. 87, 098101 (2001)Google Scholar
  5. B. Lindner, J. Garcia-Ojalvo, A. Neiman et al., Phys. Rep. 392, 321 (2004)Google Scholar
  6. Y. Wang, D.T.W. Chik, Z.D. Wang, Phys. Rev. E 61, 740 (2000); R.E. Lee DeVille, E. Vanden-Eijnden, C.B. Muratov, Phys. Rev. E 72, 031105 (2005)Google Scholar
  7. Z.H. Hou, H.W. Xin, J. Chem. Phys. 119, 11508 (2003); Y.B. Gong, Z.H. Hou, H.W. Xin, J. Phys. Chem. B 108, 17796 (2004); M.S. Wang, Z.H. Hou, H.W. Xin, Chem. Phys. Chem. 5, 1602 (2004); J.Q. Zhang, Z.H. Hou, H.W. Xin, Phys. Chem. Chem. Phys. 7, 2225 (2005)Google Scholar
  8. Z.H. Hou, H.W. Xin, Phys. Rev. E. 60, 6329 (1999)Google Scholar
  9. L. Gammaitoni, M. Löcher, A. Bulsara, P. Hänggi, J. Neff, K. Wiesenfeld, W. Ditto, M.E. Inchiosa, Phys. Rev. Lett. 82, 4574 (1999)Google Scholar
  10. J. Mason, J.F. Lindner, J. Neff, W.L. Ditto, A.R. Bulsara, M.L. Spano, Phys. Lett. A 277, 13 (2000)Google Scholar
  11. J.F. Lindner, J. Mason, J. Neff, B.J. Breen, W.L. Ditto, A.R. Bulsara, Phys. Rev. E 63, 041107 (2001)Google Scholar
  12. L.S. Tsimring, A. Pikovsky, Phys. Rev. Lett. 87, 250602 (2001)Google Scholar
  13. D. Goldobin, M. Rosenblum, A. Pikovsky, Phys. Rev. E 67, 061119 (2003)Google Scholar
  14. C. Masoller, Phys. Rev. Lett. 88, 034102 (2002)Google Scholar
  15. A.G. Balanov, N.B. Janson, E. Schöll, Physica D 199, 1 (2004); N.B. Janson1, A.G. Balanov, E. Schöll, Phys. Rev. Lett. 93, 010601 (2004)Google Scholar
  16. A.G. Balanov, V. Beato, N.B. Janson, H. Engel, E. Schöll, Phys. Rev. E 74, 016214 (2006)Google Scholar
  17. M. Borromeo, S. Giusepponi, F. Marchesoni, Phys. Rev. E 74, 031121 (2006)Google Scholar
  18. M. Borromeo, F. Marchesoni, Phys. Rev. E 75, 041106 (2007)Google Scholar
  19. Z.H. Hou, T.J. Xiao, H.W. Xin, Chem. Phys. Chem. 7, 1520 (2006); T.J. Xiao, J. Ma, Z.H. Hou, H.W. Xin, N.J. Phys. 9, 403 (2007)Google Scholar
  20. L. Arnold, N.S. Namachchivaya, K.R. Schenk-HoppR, Int. J. Bifurcation Chaos Appl. Sci. Eng. 6, 1947 (1996)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Chemical PhysicsUniversity of Science and Technology of ChinaAnhuiP.R. China
  2. 2.Hefei National Lab for Physical Science at Microscale, HefeiAnhuiP.R. China

Personalised recommendations