Advertisement

The European Physical Journal B

, Volume 68, Issue 3, pp 427–433 | Cite as

Unconventional quantum phases in lattice bosonic mixtures

  • P. BuonsanteEmail author
  • S. M. Giampaolo
  • F. Illuminati
  • V. Penna
  • A. Vezzani
Article

Abstract

We consider strongly interacting boson-boson mixtures on one-dimensional lattices and, by adopting a qualitative mean-field approach, investigate their quantum phases as the interspecies repulsion is increased. In particular, we analyze the low-energy quantum emulsion metastable states occurring at large values of the interspecies interaction, which are expected to prevent the system from reaching its true ground state. We argue a significant decrease in the visibility of the time-of-flight images in the case of these spontaneously disordered states.

PACS

03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations 03.75.Mn Multicomponent condensates; spinor condensates 64.60.My Metastable phases 73.43.Nq Quantum phase transitions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.D.M. Haldane, Phys. Lett. A 80, 280 (1980)Google Scholar
  2. M.P. Fisher, P.B. Weichman, G. Grinstein, D.S. Fisher, Phys. Rev. B 40, 546 (1989)Google Scholar
  3. M. Greiner, O. Mandel, T. Esslinger, T.W. H\({\rm \ddot{a}}\)nsch, I. Bloch, Nature 415, 39 (2002)Google Scholar
  4. D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Phys. Rev. Lett. 81, 3108 (1998)Google Scholar
  5. J.E. Lye, L. Fallani, M. Modugno, D.S. Wiersma, C. Fort, M. Inguscio, Phys. Rev. Lett. 95, 070401 (2005)Google Scholar
  6. D. Clément, A.F. Varón, M. Hugbart, J.A. Retter, P. Bouyer, L. Sanchez- Palencia, D.M. Gangardt, G.V. Shlyapnikov, A. Aspect, Phys. Rev. Lett. 95, 170409 (2005)Google Scholar
  7. U. Gavish, Y. Castin, Phys. Rev. Lett. 95, 020401 (2005)Google Scholar
  8. S. Ospelkaus, C. Ospelkaus, O. Wille, M. Succo, P. Ernst, K. Sengstock, K. Bongs, Phys. Rev. Lett. 96, 180403 (2006)Google Scholar
  9. B. Damski, L. Santos, E. Tiemann, M. Lewenstein, S. Kotochigova, P. Julienne, P. Zoller, Phys. Rev. Lett. 90, 110401 (2003)Google Scholar
  10. A.J. Daley, P.O. Fedichev, P. Zoller, Phys. Rev. A 69, 022306 (2005)Google Scholar
  11. A.B. Kuklov, B.V. Svistunov, Phys. Rev. Lett. 90, 100401 (2003)Google Scholar
  12. L.-M. Duan, E. Demler, M.D. Lukin, Phys. Rev. Lett. 91, 090402 (2003)Google Scholar
  13. F. Ferlaino, E. De Mirandes, R. Heidemann, G. Roati, G. Modugno, M. Inguscio, J. Phys. IV 116 253 (2004)Google Scholar
  14. K. Günter, T. Stöferle, H. Moritz, M. Köhl, T. Esslinger, Phys. Rev. Lett. 96, 180402 (2006)Google Scholar
  15. J. Catani, L. De Sarlo, G. Barontini, F. Minardi, M. Inguscio, Phys. Rev. A 77, 011603R (2008)Google Scholar
  16. A. Albus, F. Illuminati, J. Eisert, Phys. Rev. A 68, 023606 (2003)Google Scholar
  17. S.K. Adhikari, Phys. Rev. A 70, 043617 (2004)Google Scholar
  18. F. Illuminati, A. Albus, Phys. Rev. Lett. 93, 090406 (2004)Google Scholar
  19. M. Cramer, J. Eisert, F. Illuminati, Phys. Rev. Lett. 93, 190405 (2004)Google Scholar
  20. R. Roth, K. Burnett, Phys. Rev. A 68, 023604 (2003)Google Scholar
  21. R. Roth, K. Burnett, Phys. Rev. A 69, 021601(R) (2004)Google Scholar
  22. E. Altman, W. Offstetter, E. Demler, M.D. Lukin, New J. Phys. 5, 113 (2003)Google Scholar
  23. G.-H. Chen, Y.-S. Wu, Phys. Rev. A 67, 013606 (2003)Google Scholar
  24. O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Phys. Rev. Lett. 97, 230403 (2006)Google Scholar
  25. L. Mathey, Phys. Rev. B 75, 144510 (2007)Google Scholar
  26. T. Roscilde, J.I. Cirac, Phys. Rev. Lett. 98, 190402 (2007)Google Scholar
  27. P. Buonsante, S.M. Giampaolo, F. Illuminati, V. Penna, A. Vezzani, Phys. Rev. Lett. 100, 240402 (2008)Google Scholar
  28. L. Pollet, M. Troyer, K. Van Houcke, S.M.A. Rombouts, Phys. Rev. Lett. 96, 190402 (2006)Google Scholar
  29. F. Hébert, F. Haudin, L. Pollet, G.G. Batrouni, Phys. Rev. A. 76, 043619 (2007)Google Scholar
  30. C. Menotti, C. Trefzger, M. Lewenstein, Phys. Rev. Lett. 98, 235301 (2007)Google Scholar
  31. K.V. Krutitsky, R. Graham, Phys. Rev. A 70, 063610 (2004)Google Scholar
  32. K.V. Krutitsky, M. Timmer, R. Graham, Phys. Rev. A 71, 033623 (2005)Google Scholar
  33. M. Yamashita, M.W. Jack, Phys. Rev. A 76, 023606 (2007)Google Scholar
  34. A. Argüelles, L. Santos, Phys. Rev. A 75, 053613 (2007)Google Scholar
  35. P. Buonsante, V. Penna, J. Phys. A 41, 175301 (2008)Google Scholar
  36. A. Isacsson, M.-C. Cha, K. Sengupta, S.M. Girvin, Phys. Rev. B 72, 184507 (2005)Google Scholar
  37. See e.g. F.D.M Haldane, Phys. Rev. Lett. 47, 1840 (1981); C. Kollath, U. Schollwöck, J. von Delft, W. Zwerger, Phys. Rev. A 69, 031601(R) (2004); D.M. Gangardt, G.V. Schlyapnikov, New J. Phys. 8, 167 (2006); E. Toth, A.M. Rey, P.B. Blakie, Phys. Rev. A 78, 013627 (2008)Google Scholar
  38. B.S. Shastry, B. Sutherland, Phys. Rev. Lett. 65, 243 (1991)Google Scholar
  39. D.J. Scalapino, S.R. White, S. Zhang, Phys. Rev. B 47, 7995 (1993)Google Scholar
  40. R.E. Peierls, Z. Phys. 80, 763 (1933)Google Scholar
  41. F. Gerbier, A. Widera, S. Fölling, O. Mandel, T. Gericke, I. Bloch, Phys. Rev. A 72, 053606 (2005)Google Scholar
  42. P. Buonsante, V. Penna, A. Vezzani, P.B. Blakie, Phys. Rev. A 76, 011602(R) (2007)Google Scholar
  43. Rigorously speaking, aligning all the phases of the local order parameters while leaving their moduli unchanged attains the minimum energy for a given droplet arrangement. This shows that states where different droplets are characterized by different phases cannot be the absolute minumum. On the other hand, as we discussed above, a generic quantum emulsion state cannot be the absolute minimum either, because of its many phase interfacesGoogle Scholar
  44. P. Buonsante, F. Massel, V. Penna, A. Vezzani, Laser Physics 18, 653 (2008)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • P. Buonsante
    • 1
    Email author
  • S. M. Giampaolo
    • 2
    • 3
  • F. Illuminati
    • 2
    • 3
    • 4
  • V. Penna
    • 1
  • A. Vezzani
    • 5
    • 6
  1. 1.C.N.I.S.M. and Dipartimento di FisicaTorinoItaly
  2. 2.Dipartimento di Matematica e InformaticaUniversità degli Studi di SalernoFisciano (SA)Italy
  3. 3.CNR-INFM CoherentiaBaronissi (SA)Italy
  4. 4.Institute for Scientific InterchangeTorinoItaly
  5. 5.CNR-INFMModenaItaly
  6. 6.Dipartimento di FisicaUniversità degli Studi di ParmaParmaItaly

Personalised recommendations