Advertisement

The European Physical Journal B

, Volume 68, Issue 3, pp 417–426 | Cite as

Ultracold bosons with 3-body attractive interactions in an optical lattice

  • E. FersinoEmail author
  • B. A. Malomed
  • G. Mussardo
  • A. Trombettoni
Article

Abstract

We study the effect of an optical lattice (OL) on the ground-state properties of one-dimensional ultracold bosons with three-body attractive interactions and two-body repulsive interactions, which are described by a cubic-quintic Gross-Pitaevskii equation with a periodic potential. Without the optical lattice and with a vanishing two-body interaction term, normalizable soliton solutions of the Townes type are possible only at a critical value of the interaction strength, at which an infinite degeneracy of the ground state occurs; a repulsive two-body interaction makes such localized solutions unstable. We show that the OL opens a stability window around the critical point when the strength of the periodic potential is above a critical threshold. We also consider the effect of an external parabolic trap, studying how the stability properties depend on the matching between minima of the periodic potential and the minimum of the parabolic trap.

PACS

03.75.-b Matter waves 67.85.-d Ultracold gases, trapped gases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Alkali Gases (Cambridge, Cambridge University Press, 2002)Google Scholar
  2. L.P. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Oxford, Clarendon Press, 2003)Google Scholar
  3. O. Morsch, M.K. Oberthaler, Rev. Mod. Phys. 78, 179 (2006)Google Scholar
  4. D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Phys. Rev. Lett. 81, 3108 (1998)Google Scholar
  5. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Nature 419, 51 (2002)Google Scholar
  6. A. Trombettoni, A. Smerzi, Phys. Rev. Lett. 86, 2353 (2001)Google Scholar
  7. F.K. Abdullaev, B.B. Baizakov, S.A. Darmanyan, V.V. Konotop, M. Salerno, Phys. Rev. A 64, 043606 (2001)Google Scholar
  8. G.L. Alfimov, P.G. Kevrekidis, V.V. Konotop, M. Salerno, Phys. Rev. E 66, 046608 (2002)Google Scholar
  9. M.A. Porter, R. Carretero-González, P.G. Kevrekidis, B.A. Malomed, Chaos 15, 015115 (2005)Google Scholar
  10. B. Wu, Q. Niu, Phys. Rev. A 64, 061603(R) (2001)Google Scholar
  11. A. Smerzi, A. Trombettoni, P.G. Kevrekidis, A.R. Bishop, Phys. Rev. Lett. 89, 170402 (2002)Google Scholar
  12. V.V. Konotop, M. Salerno, Phys. Rev. A 65, 021602 (2002)Google Scholar
  13. B. Wu, Q. Niu, New J. Phys. 5, 104 (2003)Google Scholar
  14. C. Menotti, A. Smerzi, A. Trombettoni, New J. Phys. 5, 112 (2003)Google Scholar
  15. E. Taylor, E. Zaremba, Phys. Rev. A 68, 053611 (2003)Google Scholar
  16. M. Krämer, C. Menotti, L.P. Pitaevskii, S. Stringari, Eur. Phys. J. D 27, 247 (2003)Google Scholar
  17. M. Krämer, C. Menotti, M. Modugno, J. Low Temp. Phys. 138, 729 (2005)Google Scholar
  18. F.S. Cataliotti, L. Fallani, F. Ferlaino, C. Fort, P. Maddaloni, M. Inguscio, New J. Phys. 5, 71 (2003)Google Scholar
  19. L. Fallani, L. De Sarlo, J.E. Lye, M. Modugno, R. Saers, C. Fort, M. Inguscio, Phys. Rev. Lett. 93, 140406 (2004)Google Scholar
  20. F.K. Abdullaev, B.B. Baizakov, S.A. Darmanyan, V.V. Konotop, M. Salerno, Phys. Rev. A 64, 043606 (2001); I. Carusotto, D. Embriaco, G.C. La Rocca, Phys. Rev. A 65, 053611 (2002); B.B. Baizakov, V.V. Konotop, M. Salerno, J. Phys. B 35, 5105 (2002); E.A. Ostrovskaya, Y.S. Kivshar, Phys. Rev. Lett. 90, 160407 (2003); E.A. Ostrovskaya, Y.S. Kivshar, Opt. Exp. 12, 19 (2004)Google Scholar
  21. B. Eiermann, T. Anker, M. Albiez, M. Taglieber, P. Treutlein, K.P. Marzlin, M.K. Oberthaler, Phys. Rev. Lett. 92, 230401 (2004)Google Scholar
  22. K.E. Strecker, G.B. Partridge, A.G. Truscott, R.G. Hulet, Nature 417, 150 (2002)Google Scholar
  23. L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles, L.D. Carr, Y. Castin, C. Salomon, Science 296, 1290 (2002)Google Scholar
  24. S.L. Cornish, S.T. Thompson, C.E. Wieman, Phys. Rev. Lett. 96, 170401 (2006)Google Scholar
  25. B.A. Malomed, Soliton Management in Periodic Systems (Springer-Verlag, New York, 2006)Google Scholar
  26. C. Sulem, P.-L. Sulem, The Nonlinear Schrödinger Equation (Springer-Verlag, New York, 1999)Google Scholar
  27. M.J. Ablowitz, B. Prinari, A.D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems (Cambridge, University Press, 2004)Google Scholar
  28. B.B. Baizakov, B.A. Malomed, M. Salerno, Europhys. Lett. 63, 642 (2003)Google Scholar
  29. J. Yang, Z.H. Musslimani, Opt. Lett. 28, 2094 (2003)Google Scholar
  30. B.B. Baizakov, B.A. Malomed, M. Salerno, Phys. Rev. A 70, 053613 (2004); B.B. Baizakov, B.A. Malomed, M. Salerno, Phys. Rev. E 74, 066615 (2006)Google Scholar
  31. D. Mihalache, D. Mazilu, F. Lederer, Y.V. Kartashov, L.-C. Crasovan, L. Torner, Phys. Rev. E 70, 055603(R) (2004)Google Scholar
  32. B. Paredes, T. Keilmann, J.I. Cirac, Phys. Rev. A 75, 053611 (2007)Google Scholar
  33. H.P. Buchler, A. Micheli, P. Zoller, Nature Phys. 3, 726 (2007)Google Scholar
  34. G. Moore, N. Read, Nucl. Phys. B 360, 362 (1991)Google Scholar
  35. E. Fersino, G. Mussardo, A. Trombettoni, Phys. Rev. A 77, 053608 (2008)Google Scholar
  36. F.K. Abdullaev, M. Salerno, Phys. Rev. A 72, 033617 (2005)Google Scholar
  37. A.E. Muryshev, G.V. Shlyapnikov, W. Ertmer, K. Sengstock, M. Lewenstein, Phys. Rev. Lett. 89, 110401 (2002)Google Scholar
  38. L. Khaykovich, B.A. Malomed, Phys. Rev. A 74, 023607 (2006)Google Scholar
  39. Y.S. Kivshar, G.P. Agrawal, Optical Solitons (Elsevier Science, San Diego, 2003)Google Scholar
  40. R. Driben, B.A. Malomed, Eur. Phys. J. D 50, 317 (2008), DOI: 10.1140/epjd/e2008-00239-3Google Scholar
  41. R. Driben, B.A. Malomed, A. Gubeskys, J. Zyss, Phys. Rev. E 76, 066604 (2007)Google Scholar
  42. B.A. Malomed, Z.H. Wang, P.L. Chu, G.D. Peng, J. Opt. Soc. Am. B 16, 1197 (1999)Google Scholar
  43. Z. Xu, Y.V. Kartashov, L. Torner, Phys. Rev. Lett. 95, 113901 (2005)Google Scholar
  44. Z. Dai, Y. Wang, Q. Guo, Phys. Rev. A 77, 063834 (2008)Google Scholar
  45. B.A. Malomed, Progr. Opt. 43, 69 (2001)Google Scholar
  46. E.H. Lieb, W. Liniger, Phys. Rev. 130, 1605 (1963)Google Scholar
  47. J.B. McGuire, J. Math. Phys. 5, 622 (1964)Google Scholar
  48. F. Calogero, A. Degasperis, Phys. Rev. A 11, 265 (1975)Google Scholar
  49. M.J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform (SIAM, Philadelphia, 1981)Google Scholar
  50. A.D. Polyanin, V.F. Zaitsev, Handbook of Nonlinear Partial Differential Equations (Chapman & Hall/CRC Press, Boca Raton, 2004)Google Scholar
  51. Y.B. Gaididei, J. Schjodt-Eriksen, P.L. Christiansen, Phys. Rev. E 60, 4877 (1999)Google Scholar
  52. K.I. Pushkarov, D.I. Pushkarov, I.V. Tomov, Opt. Quant. Elect. 11, 471 (1979)Google Scholar
  53. S. Cowan, R.H. Enns, S.S. Rangnekar, S.S. Sanghera, Can. J. Phys. 64, 311 (1986)Google Scholar
  54. M.G. Vakhitov, A.A. Kolokolov, Radiophys. Quant. Electron. 16, 783 (1973)Google Scholar
  55. G. Baym, C.J. Pethick, Phys. Rev. Lett. 76, 6 (1996)Google Scholar
  56. A.L. Fetter, e-print arXiv:cond-mat/9510037 Google Scholar
  57. P.A. Ruprecht, M.J. Holland, K. Burnett, M. Edwards, Phys. Rev. A 51, 4704 (1995)Google Scholar
  58. D. Anderson, Phys. Rev. A 27, 3135 (1983)Google Scholar
  59. B.B. Baizakov, M. Salerno, Phys. Rev. A 69, 013602 (2004)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • E. Fersino
    • 1
    • 2
    Email author
  • B. A. Malomed
    • 3
  • G. Mussardo
    • 1
    • 2
    • 4
  • A. Trombettoni
    • 1
    • 2
  1. 1.International School for Advanced StudiesTriesteItaly
  2. 2.Istituto Nazionale di Fisica NucleareSezione di TriesteItaly
  3. 3.Department of Physical ElectronicsSchool of Electrical Engineering, Faculty of Engineering, Tel Aviv UniversityTel AvivIsrael
  4. 4.Abdus Salam International Centre of Theoretical Physics, Strada Costiera 11TriesteItaly

Personalised recommendations