The European Physical Journal B

, Volume 69, Issue 4, pp 571–581 | Cite as

Analytical calculation of critical perturbation amplitudes and critical densities by non-linear stability analysis of a simple traffic flow model

  • D. Helbing
  • M. Moussaid
Interdisciplinary Physics


Driven many-particle systems with nonlinear interactions are known to often display multi-stability, i.e. depending on the respective initial condition, there may be different outcomes. Here, we study this phenomenon for traffic models, some of which show stable and linearly unstable density regimes, but areas of metastability in between. In these areas, perturbations larger than a certain critical amplitude will cause a lasting breakdown of traffic, while smaller ones will fade away. While there are common methods to study linear instability, non-linear instability had to be studied numerically in the past. Here, we present an analytical study for the optimal velocity model with a stepwise specification of the optimal velocity function and a simple kind of perturbation. Despite various approximations, the analytical results are shown to reproduce numerical results very well.


89.40.Bb Land transportation 45.70.Vn Granular models of complex systems; traffic flow 83.60.Wc Flow instabilities 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. D.C. Gazis, Traffic Science (Wiley, New York, 1974) Google Scholar
  2. K. Nagel, M. Schreckenberg, J. Phys. I France 2, 2221 (1992) Google Scholar
  3. O. Biham, A.A. Middleton, D. Levine, Phys. Rev. A 46, R6124 (1992) Google Scholar
  4. B.S. Kerner, P. Konhäuser, Phys. Rev. E 48, R2335 (1993) Google Scholar
  5. D. Helbing, Physica A 219, 375 (1995) Google Scholar
  6. V. Shvetsov, D. Helbing, Phys. Rev. E 59, 6328 (1999) Google Scholar
  7. D. Helbing, Physica A 219, 375 (1995) Google Scholar
  8. D. Helbing, A Greiner, Phys. Rev. E 55, 5498 (1997) Google Scholar
  9. K. Nagel, Multi-Agent Transportation Simulations, see Google Scholar
  10. D. Helbing, Rev. Mod. Phys. 73, 1067 (2001) Google Scholar
  11. D. Chowdhury, L. Santen, A. Schadschneider, Phys. Rep. 329, 199ff (2000) Google Scholar
  12. T. Nagatani, Rep. Prog. Phys. 65, 1331 (2002) Google Scholar
  13. D. Helbing, R. Jiang, M. Treiber, Phys. Rev. E 72, 046130 (2005) Google Scholar
  14. R. Herman, E.W. Montroll, R.B. Potts, R.W. Rothery, Operations Research 7, 86 (1959) Google Scholar
  15. M. Bando, K. Hasebe, A. Nakayama, A. Shibata, Y. Sugiyama, Phys. Rev. E 51, 1035 (1995) Google Scholar
  16. N. Mitarai, H. Nakanishi, J. Phys. Soc. Jpn 69, 3752 (2000) Google Scholar
  17. G. Orosz, R.E. Wilson, B. Krauskopf, Global bifurcation of an optimal velocity traffic model with driver reaction time. Phys. Rev. E 70, 026207 (2004) Google Scholar
  18. G. Orosz, B. Krauskopf, R.E. Wilson, Physica D 211, 277 (2005) Google Scholar
  19. R.E. Wilson, Royal Society, submitted Google Scholar
  20. D. Helbing, Eur. Phys. J. B, submitted (2008) Google Scholar
  21. Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, S.-I. Tadaki, S. Yukawa, New J. Phys. 10, 033001 (2008) Google Scholar
  22. B.S. Kerner, The Physics of Traffic (Springer, Heidelberg, 2004) Google Scholar
  23. M. Schönhof, D. Helbing, Transportation Sci. 41, 135 (2007) Google Scholar
  24. B.S. Kerner, P. Konhäuser, Phys. Rev. E 50, 54 (1994) Google Scholar
  25. D. Helbing, A. Hennecke, V. Shvetsov, M. Treiber, Math. Comp. Model. 35, 517 (2002) Google Scholar
  26. M. Herrmann, B.S. Kerner, Physica A 255, 163 (1998) Google Scholar
  27. D. Helbing, M. Schreckenberg, Phys. Rev. E 59, R2505 (1999) Google Scholar
  28. B.S. Kerner, S.L. Klenov, P. Konhäuser, Phys. Rev. E 56, 4200 (1997) Google Scholar
  29. Y. Sugiyama, H. Yamada, Phys. Rev. E 55, 7749 (1997) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.ETH Zurich, UNO D11, Universitätstr. 41ZurichSwitzerland

Personalised recommendations