The European Physical Journal B

, Volume 67, Issue 2, pp 197–208 | Cite as

1D FFLO state in absence of time reversal symmetry breaking

  • T. DattaEmail author
Solid State and Materials


We propose a route to a one-dimensional Fulde-Ferrell-Larkin-Ovchinnikov state in the absence of broken time-reversal symmetry. At present such a state may be encouraged in a clean (no disorder) AlAs quantum wire fabricated using the cleaved edge overgrowth technique. The fabrication technique captures two degenerate nonoverlapping bands separated in momentum-space by half an umklapp vector which leads to four Fermi points. Using field theoretic methods such as abelian bosonization and the renormalization group scheme we treat the important low energy long wavelength fermionic interaction terms for this one dimensional system. Due to the specific bandstructure arrangement of the quantum wire there is a new class of unique umklapp assisted interactions. These umklapp interactions are present at all electronic densities and are not related to the commensurability of the electron gas with the underlying lattice. We show that in the presence of the umklapp interactions and without any external perturbations such as a magnetic or electric field a singlet superconducting ground state is preferred with non-zero center-of-mass momentum for the Cooper pairs. The finite pairing momentum of the Cooper pairs is an indication of a Fulde-Ferrell-Larkin-Ovchinnikov state which is known to lead to inhomogeneous superconductivity.


73.21.Hb Quantum wires 74.10.+v Occurrence, potential candidates 74.20.-z Theories and models of superconducting state 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. P. Fulde, R.A. Ferrell, Phys. Rev. 135, A550 (1964)Google Scholar
  2. A.I. Larkin, Y.N. Ovchinnikov, Sov. Phys. JETP 20, 762 (1965)Google Scholar
  3. R. Casalbuoni, G. Nardulli, Rev. Mod. Phys. 76, 263 (2004)Google Scholar
  4. K. Gloos, R. Modler, H. Schimanski, C.D. Bredl, C. Geibel, F. Steglich, A.I. Buzdin, N. Sato, T. Komatsubara, Phys. Rev. Lett. 70, 501 (1993)Google Scholar
  5. M. Tachiki, S. Takahashi, P. Gegenwart, M. Weiden, C.G.M. Lang, F. Steglich, R. Modler, C. Paulsen, Y. Onuki, Z. Phys. B: Condens. Matter 100, 369 (1996)Google Scholar
  6. R. Modler, P. Gegenwart, M. Lang, M. Deppe, M. Weiden, T. Lühmann, C. Geibel, F. Steglich, C. Paulsen, J.L. Tholence et al., Phys. Rev. Lett. 76, 1292 (1996)Google Scholar
  7. P. Gegenwart, M. Deppe, M. Koppen, F. Kromer, M. Lang, R. Modler, M. Weiden, C. Geibel, F. Steglich, T. Fukase et al., Ann. Phys. 5, 307 (1996)Google Scholar
  8. J.L. O’Brien, H. Nakagawa, A.S. Dzurak, R.G. Clark, B.E. Kane, N.E. Lumpkin, R.P. Starrett, N. Muira, E.E. Mitchell, J.D. Goettee et al., Phys. Rev. B 61, 1584 (2000)Google Scholar
  9. J. Singleton, J.A. Symington, M.S. Nam, A. Ardavan, M. Kurmoo, P. Day, J. Phys.: Condens. Matter 12, L641 (2000)Google Scholar
  10. D.J. Singh, I.I. Mazin, Phys. Rev. Lett. 88, 187004 (2002)Google Scholar
  11. M.A. Tanatar, T. Ishiguro, H. Tanaka, H. Kobayashi, Phys. Rev. B 66, 134503 (2002)Google Scholar
  12. M. Krawiec, B.L. Györffy, J.F. Annett, Phys. Rev. B 70, 134519 (2004)Google Scholar
  13. W.V. Liu, F. Wilczek, Phys. Rev. Lett. 90, 047002 (2003)Google Scholar
  14. O. Zachar, S.A. Kivelson, V.J. Emery, Phys. Rev. Lett. 77, 1342 (1996)Google Scholar
  15. Q. Cui, C.R. Hu, J.Y.T. Wei, K. Yang, Phys. Rev. B 73, 214514 (2006)Google Scholar
  16. H.A. Radovan, N.A. Fortune, T.P. Murphy, S.T. Hannahs, E.C. Palm, S.W. Tozer, D. Hall, Nature (London) 425, 51 (2003)Google Scholar
  17. A. Bianchi, R. Movshovich, C. Capan, P.G. Pagliuso, J.L. Sarrao, Phys. Rev. Lett. 91, 187004 (2003)Google Scholar
  18. C. Capan, A. Bianchi, R. Movshovich, A.D. Christianson, A. Malinowski, M.F. Hundley, A. Lacerda, P.G. Pagliuso, J.L. Sarrao, Phys. Rev. B 70, 134513 (2004)Google Scholar
  19. T. Watanabe, Y. Kasahara, K. Izawa, T. Sakakibara, Y. Matsuda, C.J. van der Beek, T. Hanaguri, H. Shishido, R. Settai, Y. Onuki, Phys. Rev. B 70, 020506(R) (2004)Google Scholar
  20. C. Martin, C.C. Agosta, S.W. Tozer, H.A. Radovan, E.C. Palm, T.P. Murphy, J.L. Sarrao, Phys. Rev. B 71, 020503 (2005)Google Scholar
  21. K. Kakuyanagi, M. Saitoh, K. Kumagai, S. Takashima, M. Nohara, H. Takagi, Y. Matsuda, Phys. Rev. Lett. 94, 047602 (2005)Google Scholar
  22. R. Movoshovich, A. Bianchi, C. Capan, P.G. Pagliuso, J.L. Sarrao, Physica B 359 (2005)Google Scholar
  23. H. Doh, M. Song, H.Y. Kee, Phys. Rev. Lett. 97, 257001 (2006)Google Scholar
  24. K. Yang, Phys. Rev. B 63, 140511 (2001)Google Scholar
  25. K. Machida, H. Nakanishi, Phys. Rev. B 30, 122 (1984)Google Scholar
  26. Very recently there has also been a proposal of a similar spirit, JPSJ.77.043702, for a system with a two-orbital model on a square lattice that can realize pocket Fermi surfaces.Google Scholar
  27. J. Moser, T. Zibold, S. Roddaro, D. Schuh, M. Bichler, V. Pellegrini, G. Abstreiter, M. Grayson, Appl. Phys. Lett. 87, 052101 (2005)Google Scholar
  28. J. Moser, S. Roddaro, D. Schuh, M. Bichler, V. Pellegrini, M. Grayson, Phys. Rev. B 74, 193307 (2006)Google Scholar
  29. M. Shayegan, E.P. De Poortere, O. Gunawan, Y.P. Shkolnikov, E. Tutuc, K. Vakili, Two-dimensional electrons occupying multiple valleys in alas (2006), e-print Google Scholar
  30. L. Balents, M.P.A. Fisher, Phys. Rev. B 53, 12133 (1996)Google Scholar
  31. H.J. Schulz, Phys. Rev. B 53, R2959 (1996)Google Scholar
  32. H.H. Lin, L. Balents, M.P.A. Fisher, Phys. Rev. B 58, 1794 (1998)Google Scholar
  33. Y.P. Shkolnikov, E.P. De Poortere, E. Tutuc, M. Shayegan, Phys. Rev. Lett. 89, 226805 (2002)Google Scholar
  34. In addition to the correlation functions stated in Appendix C there are also the interband charge-density wave correlation functions, the spin-density wave correlation functions for both the intraband and interband case, the interband singlet superconductivity correlation function, and the triplet superconductivity correlation functions for both the intraband and interband case. In Appendix C we state only those correlation functions which survive after the RG analysis for the choice of experimentally relevant quantum wire parameters (width and the distance to the back gate).Google Scholar
  35. A. Yacoby, H.L. Stormer, N.S. Wingreen, L.N. Pfeiffer, K.W. Baldwin, K.W. West, Phys. Rev. Lett. 77, 4612 (1996)Google Scholar
  36. Private communications with Dr. Y.L. Loh.Google Scholar
  37. O. Gunawan, Y.P. Shkolnikov, E.P.D. Poortere, E. Tutuc, M. Shayegan, Phys. Rev. Lett. 93, 246603 (2004)Google Scholar
  38. L. Balents, M.P.A. Fisher, Phys. Rev. B 55, R11973 (1997)Google Scholar
  39. T. Ando, T. Nakanishi, R. Saito, J. Phys. Soc. Jpn 67, 2857 (1998)Google Scholar
  40. E. Miranda, Braz. J. Phys. 33, 3 (2003)Google Scholar
  41. T. Giamarchi, Quantum Physics in One Dimension (Clarendon Press, Oxford, 2004)Google Scholar
  42. A.O. Gogolin, A.A. Nersesyan, A.M. Tsvelik, Bosonization and Strongly Correlated Systems (Cambridge University Press, 1998)Google Scholar
  43. Highly Conducting One Dimensional Solids, edited by J.T. Devreese (Plenum Press, New York, 1997)Google Scholar
  44. B.G. Streetman, Solid State Electronic Devices, 3rd edn. (Prentice Hall, 1990)Google Scholar
  45. Dr. M. Grayson, Dr. J. Moser, private communication Google Scholar
  46. V.J. Emery, S.A. Kivelson, O. Zachar, Phys. Rev. B 56, 6120 (1997)Google Scholar
  47. K. Kubo, J. Phys. Soc. Jpn 77, 043702 (2008)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Chemistry and PhysicsAugusta State UniversityAugustaUSA

Personalised recommendations