The European Physical Journal B

, Volume 68, Issue 3, pp 391–400 | Cite as

Effective field theory for spinor dipolar Bose Einstein condensates

  • M. Takahashi
  • S. GhoshEmail author
  • T. Mizushima
  • K. Machida


We show that the effective theory of long wavelength low energy behavior of a dipolar Bose-Einstein condensate(BEC) with large dipole moments (treated as a classical spin) can be modeled using an extended non-linear sigma model (NLSM) like energy functional with an additional non-local term that represents long ranged anisotropic dipole-dipole interaction. Minimizing this effective energy functional we calculate the density and spin-profile of the dipolar Bose-Einstein condensate in the mean-field regime for various trapping geometries. The resulting configurations show strong intertwining between the spin and mass density of the condensate, transfer between spin and orbital angular momentum in the form of Einstein-de Hass effect, and novel topological properties. We have also described the theoretical framework in which the collective excitations around these mean field solutions can be studied and discuss some examples qualitatively.


03.75.Mn Multicomponent condensates; spinor condensates 03.75.Hh Static properties of condensates; thermodynamical, statistical, and structural properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A.A. Belavin, A.M. Polyakov, Pis’ma Zh. Eksp. Teor. Fiz. 22, 503 (1975) [SPIRES]; [JETP Lett. 22, 245 (1975)]Google Scholar
  2. R. Rajaraman, Solitons and Instantons (North-Holland, Amsterdam, 1989)Google Scholar
  3. U.A. Khawaja, H.C. Stoof, Nature 411, 918 (2001); J. Ruostekosky, J.R. Anglin, Phys. Rev. Lett. 86, 3934 (2001); R.A. Battye, N.R. Cooper, P.M. Sutcliffe, Phys. Rev. Lett. 88, 080401 (2002)Google Scholar
  4. See for example, L.E. Sadler, J.M. Higbie, S.R. Leslie, M. Vengalattore, D.M. Stamper-Kurn, Nature (London) 443, 312 (2006)Google Scholar
  5. S.L. Sondhi, A. Karlhede, S.A. Kivelson, E.H. Rezayi, Phys. Rev. B 47, 16419 (1993)Google Scholar
  6. K. Moon, H. Mori, K. Yang, S.M. Girvin, A.H. MacDonald, L. Zheng, D. Yashioka, S.-C. Zhang, Phys. Rev. B 51, 5138 (1995)Google Scholar
  7. S. Ghosh, R. Rajaraman, Phys. Rev. B 63, 035304 (2001)Google Scholar
  8. T. Ohmi, K. Machida, J. Phys. Soc. Jpn 67, 1822 (1998)Google Scholar
  9. T.-L. Ho, Phys. Rev. Lett. 81, 742 (1998)Google Scholar
  10. D.M. Stamper-Kurn, M.R. Andrews, A.P. Chikkatur, S. Inouye, H.-J. Miesner, J. Stenger, W. Ketterle, Phys. Rev. Lett. 80, 2027 (1998)Google Scholar
  11. A. Görlitz, T.L. Gustavson, A.E. Leanhardt, R. Löw, A.P. Chikkatur, S. Gupta, S. Inouye, D.E. Pritchard, W. Ketterle, Phys. Rev. Lett. 90, 090401 (2003)Google Scholar
  12. A. Griesmaier et al., Phys. Rev. Lett. 94, 160401 (2005)Google Scholar
  13. J. Stuhler et al., Phys. Rev. Lett. 95, 150406 (2005); A. Griesmaier et al., Phys. Rev. Lett. 97, 250402 (2006); S. Giovanazzi et al., Phys. Rev. A 74, 013621 (2005)Google Scholar
  14. T. Lahaye et al., Nature 448, 672 (2007)Google Scholar
  15. See for review, M.A. Baranov et al., Phys. Scr. T 102, 74 (2002)Google Scholar
  16. Y. Kawaguchi et al., Phys. Rev. Lett. 96, 080405 (2006); Y. Kawaguchi et al., Phys. Rev. Lett. 97, 130404 (2006); Y. Kawaguchi et al., Phys. Rev. Lett. 98, 110406 (2007)Google Scholar
  17. S. Yi, H. Pu, Phys. Rev. Lett. 97, 020401 (2006)Google Scholar
  18. R. Cheng et al., J. Phys. B 38, 2569 (2005)Google Scholar
  19. M. Vengalattore, S.R. Leslie, J. Guzman, D.M. Stamper-Kurn, Phys. Rev. Lett. 100, 170403 (2008)Google Scholar
  20. Austen Lamacraft, Phys. Rev. A 77, 063622 (2008)Google Scholar
  21. L. Santos, T. Pfau, Phys. Rev. Lett. 96, 190404 (2006)Google Scholar
  22. R.B. Diener, T.-L. Ho, Phys. Rev. Lett. 96, 190405 (2006)Google Scholar
  23. M. Takahashi, S. Ghosh, T. Mizushima, K. Machida, Phys. Rev. Lett. 98, 260403 (2007)Google Scholar
  24. L. Fadeev, A. Niemi, Nature 387, 58 (1997); Also see E. Babaev, L. Fadeev, A. Niemi, Phys. Rev. B. 65, 100512 (2002) for stable three dimensional knotted solitons in a charged two-condensate Bose-Einstein systemsGoogle Scholar
  25. J. Stenger, S. Inouye, D.M. Stamper-Kurn, H.-J. Miesner, A.P. Chikkatur, W. Ketterle, Nature (London) 396, 345 (1998)Google Scholar
  26. J.P. Burke, C.H. Greene, J.L. Bohn, Phys. Rev. Lett. 81, 3355 (1998)Google Scholar
  27. M.D. Barrett et al., Phys. Rev. Lett. 87, 010404 (2001)Google Scholar
  28. N.N. Klausen, J.L. Bohn, C.H. Greene, Phys. Rev. A 64, 053602 (2001)Google Scholar
  29. For 87Rb (F=2), the two spin dependent interactions are 80 and 50 times smaller than the spin-independent one, T. Kuwamoto et al., Phys. Rev. A 69, 063604 (2004)Google Scholar
  30. F.D.M. Haldane, Phys. Rev. Lett. 50, 1153 (1983)Google Scholar
  31. C.J. Pethick, H. Smith, in Bose-Einstein condensation in dilute gases (Cambridge University Press, Cambridge, 2002), Chap. 5, p. 576Google Scholar
  32. See the special issue on ultracold polar molecules; Eur. Phys. J. D 31, 149 (2004)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • M. Takahashi
    • 1
  • S. Ghosh
    • 2
    Email author
  • T. Mizushima
    • 1
  • K. Machida
    • 1
  1. 1.Department of PhysicsOkayama UniversityOkayamaJapan
  2. 2.Department of PhysicsIndian Institute of TechnologyNew DelhiIndia

Personalised recommendations