The European Physical Journal B

, Volume 67, Issue 3, pp 301–318 | Cite as

Nonlinear voter models: the transition from invasion to coexistence

  • F. SchweitzerEmail author
  • L. Behera
Interdisciplinary Physics Regular Article


In nonlinear voter models the transitions between two states depend in a nonlinear manner on the frequencies of these states in the neighborhood. We investigate the role of these nonlinearities on the global outcome of the dynamics for a homogeneous network where each node is connected to m = 4 neighbors. The paper unfolds in two directions. We first develop a general stochastic framework for frequency dependent processes from which we derive the macroscopic dynamics for key variables, such as global frequencies and correlations. Explicit expressions for both the mean-field limit and the pair approximation are obtained. We then apply these equations to determine a phase diagram in the parameter space that distinguishes between different dynamic regimes. The pair approximation allows us to identify three regimes for nonlinear voter models: (i) complete invasion; (ii) random coexistence; and – most interestingly – (iii) correlated coexistence. These findings are contrasted with predictions from the mean-field phase diagram and are confirmed by extensive computer simulations of the microscopic dynamics.


87.23.Cc Population dynamics and ecological pattern formation 87.23.Ge Dynamics of social systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. D. Abrams, S. Strogatz, Nature 424, 900 (2003)Google Scholar
  2. P.S. Albin, The Analysis of Complex Socioeconomic Systems (Lexington Books, London, 1975)Google Scholar
  3. J. Antonovics, P. Kareiva, Philos. Trans. R. Soc. London B 319, 601 (1988)Google Scholar
  4. L. Behera, F. Schweitzer, Int. J. Mod. Phys. C 14, 1331 (2003)Google Scholar
  5. E. Ben-Naim, L. Frachebourg, P.L. Krapivsky, Phys. Rev. E 53, 3078 (1996)Google Scholar
  6. E. Ben-Naim, P. Krapivsky, S. Redner, Physica D: Nonlinear Phenomena 183, 190 (2003)Google Scholar
  7. A.T. Bernardes, D. Stauffer, J. Kertesz, Eur. Phys. J. B 25, 123 (2002)Google Scholar
  8. C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys. (2008) Scholar
  9. C. Castellano, V. Loreto, A. Barrat, F. Cecconi, D. Parisi, Phys. Rev. E 71, 066107 (2005)Google Scholar
  10. C. Castellano, D. Vilone, A. Vespignani, Europhys. Lett. 63, 153 (2003)Google Scholar
  11. X. Castello, V. Eguíluz, M. San Miguel, New J. Phys. 8, 308 (2006)Google Scholar
  12. R.N. Costa Filho, M.P. Almeida, J.S. Andrade, J.E. Moreira, Phys. Rev. E 60, 1067 (1999)Google Scholar
  13. J.T. Cox, D. Griffeath, Annals of Probability 14, 347 (1986)Google Scholar
  14. L. Dall’Asta, C. Castellano, Europhys. Lett. 77, 60005 (2007)Google Scholar
  15. M. De Oliveira, J. Mendes, M. Santos, J. Phys. A 26, 2317 (1993)Google Scholar
  16. I. Dornic, H. Chaté, J. Chave, H. Hinrichsen, Phys. Rev. Lett. 87, 045701 (2001a)Google Scholar
  17. J. Drouffe, C. Godrèche, J. Phys. A: Mathematical and General 32, 249 (1999)Google Scholar
  18. R. Durrett, S. Levin, Theoretical Population Biology 46, 363 (1994)Google Scholar
  19. L. Frachebourg, P. Krapivsky, Phys. Rev. E 53, R3009 (1996)Google Scholar
  20. R.A. Holley, T.M. Liggett, Annals of Probability 3, 643 (1975)Google Scholar
  21. J. Hołyst, K. Kacperski, F. Schweitzer, Physica A 285, 199 (2000)Google Scholar
  22. T.H. Keitt, M.A. Lewis, R.D. Holt, The American Naturalist 157, 203 (2001)Google Scholar
  23. B.E. Kendall, O.N. Bjørnstad, J. Bascompte, T.H. Keitt, W.F. Fagan, The American Naturalist 155, 628 (2000)Google Scholar
  24. M. Kimura, G.H. Weiss, Genetics 49, 313 (1964)Google Scholar
  25. P. Krapivsky, Phys. Rev. A 45, 1067 (1992)Google Scholar
  26. P.L. Krapivsky, S. Redner, Phys. Rev. Lett. 90, 238701 (2003)Google Scholar
  27. T.M. Liggett, Annals of Probability 22, 764 (1994)Google Scholar
  28. T.M. Liggett, Stochastic Interacting Systems, Grundlehren der mathematischen Wissenschaften (Springer, Berlin, 1999), Vol. 342Google Scholar
  29. J. Molofsky, R. Durrett, J. Dushoff, D. Griffeath, S. Levin, Theoretical Population Biology 55, 270 (1999)Google Scholar
  30. C. Moore, J. Stat. Phys. 88, 795 (1997)Google Scholar
  31. H. Mühlenbein, R. Höns, Advances in Complex Systems 5, 301 (2002)Google Scholar
  32. M. Nakamaru, H. Matsuda, Y. Iwasa, J. Theor. Biology 184, 65 (1997)Google Scholar
  33. C. Neuhauser, Theoretical Population Biology 56, 203 (1999)Google Scholar
  34. A. Nowak, M. Kus, J. Urbaniak, T. Zarycki, Physica A 287, 613 (2000)Google Scholar
  35. N.A. Oomes, D. Griffeath, C. Moore, New Constructions in cellular automata (Oxford Universitiy Press, 2002), pp. 207–230Google Scholar
  36. S.W. Pacala, J.A. Silander, Jr., The American Naturalist 125, 385 (1985)Google Scholar
  37. S. Redner, A guide to first-passage processes (Cambridge University Press, Cambridge, 2001)Google Scholar
  38. F.J. Rohlf, G.D. Schnell, The American Naturalist 105, 295 (1971)Google Scholar
  39. T. Schelling, Am. Econ. Rev. 59, 488 (1969)Google Scholar
  40. F. Schweitzer, Brownian Agents and Active Particles. Collective Dynamics in the Natural and Social Sciences, Springer Series in Synergetics (Springer, Berlin, 2003)Google Scholar
  41. F. Schweitzer, L. Behera, H. Mühlenbein, Advances in Complex Systems 5, 269 (2002)Google Scholar
  42. F. Schweitzer, J. Hołyst, Eur. Phys. J. B 15, 723 (2000)Google Scholar
  43. F. Slanina, H. Lavicka, Eur. Phys. J. B 35, 279 (2003)Google Scholar
  44. V. Sood, S. Redner, Phys. Rev. Lett. 94, 178701 (2005)Google Scholar
  45. H.-U. Stark, C.J. Tessone, F. Schweitzer, Phys. Rev. Lett. 101, 018701 (2008a)Google Scholar
  46. H.-U. Stark, C.J. Tessone, F. Schweitzer, Advances in Complex Systems 11, 87 (2008b)Google Scholar
  47. K. Suchecki, V.M. Eguíluz, M. San Miguel, Europhys. Lett. 69, 228 (2005a)Google Scholar
  48. K. Suchecki, V.M. Eguíluz, M. San Miguel, Phys. Rev. E 72, 036132 (2005b)Google Scholar
  49. G. Szabó, T. Antal, P. Szabó, M. Droz, Phys. Rev. E 62, 1095 (2000)Google Scholar
  50. F. Vazquez, V.M. Eguiluz, M.S. Miguel, Phys. Rev. Lett. 100, 108702 (2008)Google Scholar
  51. F. Vazquez, C. Lopez, Phys. Rev. E 78, 061127 (2008)Google Scholar
  52. W. Weidlich, J. Mathematical Sociology 18, 267 (1994)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Chair of Systems Design, ETH Zurich, Kreuzplatz 5ZurichSwitzerland
  2. 2.Department of Electrical EngineeringIndian Institute of TechnologyKanpurIndia

Personalised recommendations