Advertisement

The European Physical Journal B

, Volume 68, Issue 3, pp 353–364 | Cite as

Quantum diffusion of matter waves in 2D speckle potentials

  • C. Miniatura
  • R. C. Kuhn
  • D. Delande
  • C. A. Müller
Article

Abstract

This paper investigates quantum diffusion of matter waves in two-dimensional random potentials, focussing on expanding Bose-Einstein condensates in spatially correlated optical speckle potentials. Special care is taken to describe the effect of dephasing, finite system size, and an initial momentum distribution. We derive general expressions for the interference-renormalized diffusion constant, the disorder-averaged probability density distribution, the variance of the expanding atomic cloud, and the localized fraction of atoms. These quantities are studied in detail for the special case of an inverted-parabola momentum distribution as obtained from an expanding condensate in the Thomas-Fermi regime. Lastly, we derive quantitative criteria for the unambiguous observation of localization effects in a possible 2D experiment.

PACS

03.75.Kk Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow 42.25.Dd Wave propagation in random media 72.15.Rn Localization effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen, U. Sen, Adv. Phys. 56, 243 (2007)Google Scholar
  2. P.W. Anderson, Phys. Rev. Lett. 109, 1492 (1958)Google Scholar
  3. B.V. Tiggelen, in Diffuse Waves in Complex Media, edited by J.P. Fouque (Kluwer, 1999), pp. 1–60Google Scholar
  4. B. Kramer, A. MacKinnon, Rep. Progr. Phys. 56, 1469 (1993)Google Scholar
  5. J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, A. Aspect, Nature 453, 891 (2008)Google Scholar
  6. G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, M. Inguscio, Nature 453, 895 (2008)Google Scholar
  7. E. Abrahams, P.W. Anderson, D.C. Licciardello, T.V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979)Google Scholar
  8. R.C. Kuhn, C. Miniatura, D. Delande, O. Sigwarth, C.A. Müller, Phys. Rev. Lett. 95, 250403 (2005)Google Scholar
  9. R. Kuhn, O. Sigwarth, C. Miniatura, D. Delande, C.A. Müller, New J. Phys. 9, 161 (2007)Google Scholar
  10. D. Vollhardt, P. Wölfle, Phys. Rev. B 22, 4666 (1980)Google Scholar
  11. B. Shapiro, Phys. Rev. B 25, 4266 (1982)Google Scholar
  12. L. Sanchez-Palencia, D. Clément, P. Lugan, P. Bouyer, G.V. Shlyapnikov, A. Aspect, Phys. Rev. Lett. 98, 210401 (2007)Google Scholar
  13. B. Shapiro, Phys. Rev. Lett. 99, 060602 (2007)Google Scholar
  14. D. Clément, A.F. Varón, J.A. Retter, L. Sanchez-Palencia, A. Aspect, P. Bouyer, New J. Phys. 8, 165 (2006)Google Scholar
  15. J.W. Goodman, in Laser speckle and related phenomena, edited by J.C. Dainty (Springer-Verlag, 1975)Google Scholar
  16. M. Hartung, T. Wellens, C.A. Müller, K. Richter, P. Schlagheck, Phys. Rev. Lett. 101, 020603 (2008)Google Scholar
  17. M. Hillery, R.F. O’Connell, M.O. Scully, E.P. Wigner, Phys. Rep. 106, 121 (1984)Google Scholar
  18. J. Rammer, Quantum Transport Theory (Perseus Books, Reading, Mass., 1998)Google Scholar
  19. Y. Kagan, E.L. Surkov, G.V. Shlyapnikov, Phys. Rev. A 54, R1753 (1996)Google Scholar
  20. N. Ashcroft, D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976)Google Scholar
  21. E. Akkermans, G. Montambaux, Mesoscopic physics of electrons and photons (Cambridge University Press, Cambridge, 2007)Google Scholar
  22. S. Chandrasekhar, Radiative Transfer (Dover Publications, New York, 1960)Google Scholar
  23. V.M. Apalkov, M.E. Raikh, B. Shapiro, J. Opt. Soc. Am. B 21, 132 (2004)Google Scholar
  24. E. Akkermans, G. Montambaux, J.L. Pichard, J. Zinn-Justin, Mesoscopic Quantum Physics, Proceedings of the Les Houches Summer School Session LX1 (Elsevier Science, Amsterdam, 1995)Google Scholar
  25. O.I. Lobkis, R.L. Weaver, Phys. Rev. E 71, 011112 (2005)Google Scholar
  26. L. Gor’kov, A. Larkin, D. Khmel’nitskii, Pis’ma Zh. Eksp. Teor. Fiz. 30, 248 (1979) [JETP Lett. 30, 228 (1979)]Google Scholar
  27. G. Bergmann, Phys. Rep. 107, 1 (1984)Google Scholar
  28. M. Abramowitz, I. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical table (Dover Publications, New York, 1972)Google Scholar
  29. S.E. Skipetrov, A. Minguzzi, B.A. Van Tiggelen, B. Shapiro, Phys. Rev. Lett. 100, 165301 (2008)Google Scholar
  30. C.A. Müller, C. Miniatura, E. Akkermans, G. Montambaux, J. Phys. A: Math. Gen. 38, 7807 (2005)Google Scholar
  31. S. Ospelkaus, C. Ospelkaus, O. Wille, M. Succo, P. Ernst, K. Sengstock, K. Bongs, Phys. Rev. Lett. 96, 180403 (2006)Google Scholar
  32. E. Kogan, Eur. Phys. J. B 61, 181 (2008)Google Scholar
  33. G. Grynberg, C. Robilliard, Phys. Rep. 355, 335 (2001)Google Scholar
  34. N. Cherroret, S.E. Skipetrov, Phys. Rev. E 77, 046608 (2008)Google Scholar
  35. G. Labeyrie, E. Vaujour, C.A. Müller, D. Delande, C. Miniatura, D. Wilkowski, R. Kaiser Phys. Rev. Lett. 91, 223904 (2003)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • C. Miniatura
    • 1
    • 4
    • 5
  • R. C. Kuhn
    • 2
    • 4
  • D. Delande
    • 3
  • C. A. Müller
    • 2
  1. 1.Institut Non Linéaire de Nice, UMR 6618Université de Nice Sophia, CNRSValbonneFrance
  2. 2.Physikalisches Institut, Universität BayreuthBayreuthGermany
  3. 3.Laboratoire Kastler-Brossel, Université Pierre et Marie Curie-Paris 6, ENS, CNRS; 4 Place JussieuParisFrance
  4. 4.Centre for Quantum Technologies, National University of SingaporeSingaporeSingapore
  5. 5.IPAL, CNRSSingaporeSingapore

Personalised recommendations