Advertisement

The European Physical Journal B

, Volume 66, Issue 4, pp 489–495 | Cite as

Shubnikov-de Haas oscillations spectrum of the strongly correlated quasi-2D organic metal (ET)8[Hg4Cl12(C6H5Br)2] under pressure

  • D. Vignolles
  • A. AudouardEmail author
  • R. B. Lyubovskii
  • M. Nardone
  • E. Canadell
  • E. I. Zhilyaeva
  • R. N. Lyubovskaya
Solid State and Materials

Abstract

Pressure dependence of the Shubnikov-de Haas (SdH) oscillations spectra of the quasi-two dimensional organic metal (ET)8[ Hg4Cl12(C6H5Br)2] have been studied up to 1.1 GPa in pulsed magnetic fields of up to 54 T. According to band structure calculations, its Fermi surface can be regarded as a network of compensated orbits. The SdH spectra exhibit many Fourier components typical of such a network, most of them being forbidden in the framework of the semiclassical model. Their amplitude remains large in all the pressure range studied which likely rules out chemical potential oscillation as a dominant contribution to their origin, in agreement with recent calculations relevant to compensated Fermi liquids. In addition to a strong decrease of the magnetic breakdown field and effective masses, the latter being likely due to a reduction of the strength of electron correlations, a sizeable increase of the scattering rate is observed as the applied pressure increases. This latter point, which is at variance with data of most charge transfer salts is discussed in connection with pressure-induced features of the temperature dependence of the zero-field interlayer resistance.

PACS

71.18.+y Fermi surface: calculations and measurements; effective mass, g factor 71.20.Rv Polymers and organic compounds 72.15.Gd Galvanomagnetic and other magnetotransport effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.M. Falicov, H. Stachowiak, Phys. Rev. 147, 505 (1966)Google Scholar
  2. D. Shoenberg, Magnetic Oscillations in Metals (Cambridge University Press, Cambridge, 1984)Google Scholar
  3. A.S. Alexandrov, A.M. Bratkovsky, Phys. Rev. Lett. 76, 1308 (1996); A.S. Alexandrov, A.M. Bratkovsky, Phys. Lett. A 234, 53 (1997); A.S. Alexandrov, A.M. Bratkovsky, Phys. Rev. B 63, 033105 (2001); T. Champel, Phys. Rev. B 65, 153403 (2002); J.Y. Fortin, E. Perez, A. Audouard, Phys. Rev. B 71, 155101 (2005)Google Scholar
  4. A.B. Pippard, Proc. Roy. Soc. (London) A 270, 1 (1962); P.S. Sandhu, J.H. Kim, J.S. Brooks, Phys. Rev. B 56, 11566 (1997); J.Y. Fortin, T. Ziman, Phys. Rev. Lett. 80, 3117 (1998); V.M. Gvozdikov, Y.V. Pershin, E. Steep, A.G.M. Jansen, P. Wyder, Phys. Rev. B 65, 165102 (2002)Google Scholar
  5. M.-H. Whangbo, E. Canadell, Acc. Chem. Res. 22, 375 (1989); M.-H. Whangbo, E. Canadell, P. Foury, J.P. Pouget, Science 252, 96 (1991)Google Scholar
  6. U. Beierlein, C. Hess, J. Dumas, R. Buder, D. Groult, E. Steep, D. Vignolles, G. Bonfait. Eur. Phys. J. B 17, 215 (2000)Google Scholar
  7. P. Foury-Leylekian, E. Sandré, S. Ravy, J.-P. Pouget, E. Elkaim, P. Roussel, D. Groult, Ph. Labbé, Phys. Rev. B 66, 75116 (2002)Google Scholar
  8. S. Yasusuka, C. Terakura, T. Yakabe, Y. Terai, H.M. Yamamoto, R. Kato, S. Uji, Synth. Metals 135-136, 647 (2003); S. Yasusuka, S. Uji, K. Enomoto, T. Konoike, M. Nishimura, T. Terashima, D. Graf, E.S. Choi, J.S. Brooks, H.M. Yamamoto, R. Kato, K. Yokogawa, K. Murata, Synth. Metals 152, 437 (2005)Google Scholar
  9. L.F. Veiros, E. Canadell, J. Phys. I France 4, 939 (1994)Google Scholar
  10. C. Proust, A. Audouard, L. Brossard, S.I. Pesotskii, R.B. Lyubovskii, R.N. Lyubovskaia, Phys. Rev. B 65, 155106 (2002)Google Scholar
  11. D. Vignolles, A. Audouard, L. Brossard, S.I. Pesotskii, R.B. Lyubovskii, M. Nardone, E. Haanappel, R.N. Lyubovskaya, Eur. Phys. J. B 31, 53 (2003)Google Scholar
  12. A. Audouard, D. Vignolles, E. Haanappel, I. Sheikin, R.B. Lyubovskii, R.N. Lyubovskaya, Europhys. Lett. 71, 783 (2005)Google Scholar
  13. K. Kishigi, Y. Hasegawa, Europhys. Lett. 65, 205405 (2002)Google Scholar
  14. R.N. Lyubovskaia, O.A. Dyachenko, V.V. Gritsenko, Sh.G. Mkoyan, L.O. Atovmyan, R.B. Lyubovskii, V.N. Laukhin, A.V. Zvarykina, A.G. Khomenko, Synth. Metals 42, 1907 (1991)Google Scholar
  15. M.-H. Whangbo, R. Hoffmann, J. Am. Chem. Soc. 100, 6093 (1978)Google Scholar
  16. J. Ammeter, H.-B. Bürgi, J. Thibeault, R. Hoffmann, J. Am. Chem. Soc. 100, 3686 (1978)Google Scholar
  17. M. Nardone, A. Audouard, D. Vignolles, L. Brossard, Cryogenics 41, 175 (2001)Google Scholar
  18. D. Vignolles, V.N. Laukhin, A. Audouard, T.G. Prokhorova, E.B. Yagubskii, E. Canadell, Eur. Phys. J. B 51, 53 (2006)Google Scholar
  19. R.B. Lyubovskii, S.I. Pesotskii, R.N. Lyubovskaya, JETP Lett. 62, 37 (1995); R.B. Lyubovskii, S.I. Pesotskii, A. Gilevski, R.N. Lyubovskaya, J. Phys. I France 6, 1809 (1996)Google Scholar
  20. C. Strack, C. Akinci, V. Pashchenko, B. Wolf, E. Uhrig, W. Assmus, M. Lang, J. Schreuer, L. Wiehl, J.A. Schlueter, J. Wosnitza, D. Schweitzer, J. Muller, J. Wykhoff, Phys. Rev. B 72, 054511 (2005)Google Scholar
  21. H. Urayama, H. Yamochi, G. Saito, K. Nozawa, T. Sugano, M. Kinoshita, S. Sato, K. Oshima, A. Kawamoto, J. Tanaka, Chem. Lett. 55, (1988); H. Müller, C.-P. Heidmann, A. Lerf, W. Biberacher, R. Sieburger, K. Andres, Springer Proceedings in Physics, The Physics and Chemistry of Organic Superconductors (Springer-Verlag, Berlin, Heidelberg, 1990), Vol. 51Google Scholar
  22. P. Limelette, P. Wzietek, S. Florens, A. Georges, T.A. Costi, C. Pasquier, D. Jérome, C. Mézière, P. Batail, Phys. Rev. Lett. 91, 016401 (2003)Google Scholar
  23. T.F. Stalcup, J.S. Brooks, R.C. Haddon, Phys. Rev. B 60, 9309 (1999)Google Scholar
  24. J.G. Analytis, A. Ardavan, S.J. Blundell, R.L. Owen, E.F. Garman, C. Jeynes, B.J. Powell, Phys. Rev. Lett. 96, 177002 (2006)Google Scholar
  25. T. Sasaki, N. Yoneyama, Y. Nakamura, N. Kobayashi, Y. Ikemoto, T. Moriwaki, H. Kimura, Phys. Rev. Lett. 101, 206403 (2008)Google Scholar
  26. U. Lundin, R.H. McKenzie, Phys. Rev. B 68, 081101 (2003)Google Scholar
  27. A.F. Ho, A.J. Schofield, Phys. Rev. B 71, 045101 (2005)Google Scholar
  28. J. Merino, R.H. McKenzie, Phys. Rev. B 61, 7996 (2000)Google Scholar
  29. Y. Maeno, K. Yoshida, H. Hashimoto, S. Nishizaki, S. Ikeda, M. Nohara, T. Fujita, A.P. Mackenzie, N.E. Hussey, J.G. Bednorz, F. Lichtenberg, J. Phys. Soc. Jpn 66, 1405 (1997)Google Scholar
  30. J. Caulfield, W. Lubczynski, F.L. Pratt, J. Singleton, D.Y.K. Ko, W. Hayes, M. Kurmoo, P. Day, J. Phys.: Condens. Matter 6, 2911 (1994)Google Scholar
  31. J.S. Brooks, X. Chen, S.J. Klepper, S. Valfells, G.J. Athas, Y. Tanaka, T. Kinoshita, N. Kinoshita, M. Tokumoto, H. Anzai, C.C. Agosta, Phys. Rev. B 52, 14457 (1995)Google Scholar
  32. M.V. Kartsovnik, W. Biberacher, K. Andres, N.D. Kushch, JETP Lett. 62, 905 (1995) [Pis’ma Zh. Éksp. Teor. Fiz. 62, 890 (1995)]Google Scholar
  33. R.W. Stark, C.B. Friedberg, Phys. Rev. Lett. 26, 556 (1971)Google Scholar
  34. G. Moeller, Q. Si, G. Kotliar, M. Rozenberg, D.S. Fisher, Phys. Rev. Lett. 74, 2082 (1995); R.H. McKenzie, e-print arXiv:cond-mat/9802198 Google Scholar
  35. J. Hagel, J. Wosnitza, C. Pfleiderer, J.A. Schlueter, J. Mohtasham, G.L. Gard, Phys. Rev. B 68, 104504 (2003)Google Scholar
  36. D. Vignolles, A. Audouard, V.N. Laukhin, M. Nardone, E. Canadell, N.G. Spitsina, E.B. Yagubskii, Synth. Met. (2008), DOI: 10.1016/j.synthmet.2008.06.026 Google Scholar
  37. J.Y. Fortin, A. Audouard, Phys. Rev. B 77, 134440 (2008)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • D. Vignolles
    • 1
  • A. Audouard
    • 1
    Email author
  • R. B. Lyubovskii
    • 2
  • M. Nardone
    • 1
  • E. Canadell
    • 3
  • E. I. Zhilyaeva
    • 2
  • R. N. Lyubovskaya
    • 2
  1. 1.Laboratoire National des Champs Magnétiques Pulsés (UMR 5147: Unité Mixte de Recherche CNRS, Université Paul SabatierToulouseFrance
  2. 2.Institute of Problems of Chemical PhysicsMDRussia
  3. 3.Institut de Ciència de Materials de BarcelonaBellaterraSpain

Personalised recommendations