The European Physical Journal B

, Volume 66, Issue 4, pp 547–556 | Cite as

Curvature and torsion of the tight closed trefoil knot

Interdisciplinary Physics

Abstract

The curvature and torsion profiles of the tight trefoil knot found with the SONO algorithm are analysed. Their characteristics are discussed. Comparison of curvature and torsion profiles with the tightest parametrically defined knot is performed.

PACS

02.10.Kn Knot theory 36.20.-r Macromolecules and polymer molecules 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Pieranski, S. Przybyl, A. Stasiak, Eur. Phys. J. E 6, 123 (2001)Google Scholar
  2. C.C. Adams, The knot book (W.H. Freeman and Company, New York, 2001)Google Scholar
  3. Y. Diao, C. Ernst, E.J.J. van Rensburg, in Ideal Knots, Series on Knots and Everything, edited by A. Stasiak, V. Katritch, L.H. Kauffman (World Sci. Publishing, 1998), Vol. 19, p. 52Google Scholar
  4. H.K. Moffatt, Nature 347, 367 (1990)Google Scholar
  5. G.R. Buck, J. Orloff, Top. Appl. 51, 246 (1993)Google Scholar
  6. M.H. Freedman, Z.-X. He, Z. Wang, Ann. Math. 139, 1 (1994)Google Scholar
  7. J.K. Simon, J. Knot Theor. Ramif. 3, 299 (1994)Google Scholar
  8. E.J.J. van Rensburg, in Physical and Numerical Models in Knot Theory, Series on Knots and Everything, edited by J.A. Calvo, K.C. Millett, E.J. Rawdon, A. Stasiak (World Sci. Publishing, 2005), Vol. 36, p. 19Google Scholar
  9. Y. Diao, C. Ernst, E.J.J. van Rensburg, J. Knot Theor. Ramif. 6, 799 (1997)Google Scholar
  10. G. Buck, J. Simon, in Lectures at Knots 96, edited by S. Suzuki (World Sci. Publishing, 1997)Google Scholar
  11. R.A. Litherland, J. Simon, O. Durumeric, E. Rawdon, Top. Appl. 91, 233 (1999)Google Scholar
  12. Y. Diao, C. Ernst, E.J.J. van Rensburg, Math. Proc. Cambridge Phil. Soc. 126, 293 (1999)Google Scholar
  13. V. Katritch et al., Nature 384, 142 (1996)Google Scholar
  14. X. Dai, Y. Diao, J. Knot Theor. Ramif. 9, 713 (2001)Google Scholar
  15. J. Cantarella, R. Kusner, J. Sullivan, Invent. Math. 150, 257 (2002)Google Scholar
  16. O. Gonzalez, R. de la Llave, J. Knot Theor. Ramif. 12, 123 (2003)Google Scholar
  17. Y. Diao, J. Knot Theor. Ramif. 12, 1 (2003)Google Scholar
  18. Y. Diao, C. Ernst, X. Yu, Top. Appl. 136, 7 (2004)Google Scholar
  19. E. Denne, Y. Diao, J.M. Sullivan, Geometry and Topology 10, 1 (2006)Google Scholar
  20. R.B. Kusner, J.M. Sullivan, in Geometric Topology (International Press, 1996), p. 570Google Scholar
  21. O. Gonzalez, J.H. Maddocks, Proc. Natl. Acad. Sci. USA 96, 4769 (1999)Google Scholar
  22. P. Pieranski, in Ideal Knots, Series on Knots and Everything, edited by A. Stasiak, V. Katritch, L.H. Kauffman (World Sci. Publishing, 1998), Vol. 19, p. 20Google Scholar
  23. G. Buck, J. Simon, in Lectures at Knots 96, 219 (1996)Google Scholar
  24. E. Rawdon, J. Simon, Top. Appl. 125, 97 (2002)Google Scholar
  25. A. Stasiak, J. Dubochet, V. Katritch, P. Pieranski, in Ideal Knots, Series on Knots and Everything, edited by A. Stasiak, V. Katritch, L.H. Kauffman (World Sci. Publishing, 1998), Vol. 19, p. 1Google Scholar
  26. K.C. Millet, E.J. Rawdon, J. Comp. Phys. 186, 426 (2002)Google Scholar
  27. J. Baranska, P. Pieranski, E.J. Rawdon, in Physical and Numerical Models in Knot Theory, Series on Knots and Everything, edited by J.A. Calvo, K.C. Millett, E.J. Rawdon, A. Stasiak (World Sci. Publishing, 2005), Vol. 36, p. 293Google Scholar
  28. O. Gonzalez, J.H. Maddocks, F. Schuricht, H. von der Mosel, Calculus of Variations and Partial Differential Equations 14, 29 (2002)Google Scholar
  29. M. Carlen, B. Laurie, J.H. Maddocks, J. Smutny, in Physical and Numerical Models in Knot Theory, Series on Knots and Everything, edited by J.A. Calvo, K.C. Millett, E.J. Rawdon, A. Stasiak (World Sci. Publishing, 2005), Vol. 36, p. 75Google Scholar
  30. E.J.J. van Rensburg, E. Orlandini, D.W. Sumners, M.C. Tesi, S.G. Whittington, J. Knot Theor. Ramif. 6, 31 (1996)Google Scholar
  31. P.G. Dommmersnes, Y. Kantor, M. Kardar, Phys. Rev. E 66, 031802 (2002)Google Scholar
  32. T. Lobovkina et al., PNAS 101, 7949 (2004)Google Scholar
  33. J. Brown, J.-C. Latombe, K. Mongomery, The Visual Computer J. 20, 165 (2004)Google Scholar
  34. V. Katritch et al., Nature 388, 148 (1997)Google Scholar
  35. J. Baranska et al., Phys. Rev. E 70, 051810 (2004)Google Scholar
  36. L.H. Kauffman, in Physical and Numerical Models in Knot Theory, Series on Knots and Everything, edited by J.A. Calvo, K.C. Millett, E.J. Rawdon, A. Stasiak (World Sci. Publishing, 2005), Vol. 36, p. 495Google Scholar
  37. G. Buck, E.J. Rawdon, Phys. Rev. E 70, 011803 (2004)Google Scholar
  38. D. Rolfsen, Knots and links (Publish or Perish, Berkeley, 1976)Google Scholar
  39. J. Smutny, Ph.D. thesis, EPFL Lausanne, 2004Google Scholar
  40. J.M. Sullivan, in Contemp. Math. (Amer. Math. Soc., Providence, RI, 2002), Vol. 304, pp. 181–186, MR1953340Google Scholar
  41. E.J. Rawdon, Experimental Mathematics 12, 287 (2003)Google Scholar
  42. P. Pieranski, S. Przybyl, Phys. Rev. E 64, 031801 (2001)Google Scholar
  43. S. Przybyl, P. Pieranski, Eur. Phys. J. E 4, 445 (2001)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Laboratory of Computational and Semiconductor Physics, Poznan University of TechnologyPoznanPoland

Personalised recommendations