Advertisement

The European Physical Journal B

, Volume 68, Issue 3, pp 341–351 | Cite as

Extended Hubbard model in the presence of a magnetic field

  • F. Mancini
  • F. P. ManciniEmail author
Article

Abstract

Within the Green’s function and equations of motion formalism it is possible to exactly solve a large class of models useful for the study of strongly correlated systems. Here, we present the exact solution of the one-dimensional extended Hubbard model with on-site U and first nearest neighbor repulsive V interactions in the presence of an external magnetic field h, in the narrow band limit. At zero temperature our results establish the existence of four phases in the three-dimensional space (U, n, h) – n is the filling – with relative phase transitions, as well as different types of charge ordering. The magnetic field may dramatically affect the behavior of thermodynamic quantities, inducing, for instance, magnetization plateaus in the magnetization curves, and a change from a single to a double-peak tructure in the specific heat. According to the value of the particle density, we find one or two critical fields, marking the beginning of full or partial polarization. A detailed study of several thermodynamic quantities is also presented at finite temperature.

PACS

71.10.Fd Lattice fermion models 75.30.Kz Magnetic phase boundaries 71.10.-w Theories and models of many-electron systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Mancini, Europhys. Lett. 70, 484 (2005); F. Mancini, Condens. Matter Phys. 9, 393 (2006)Google Scholar
  2. F. Mancini, F.P. Mancini, Phys. Rev. E 77, 061120 (2008)Google Scholar
  3. F. Mancini, A. Avella, Adv. Phys. 53, 537 (2004)Google Scholar
  4. A. Imambekov, M. Lukin, E. Demler, Phys. Rev. Lett. 93, 120405 (2004)Google Scholar
  5. F.D.M. Haldane, Phys. Lett. A 93, 464 (1993) ; F.D.M. Haldane, Phys. Rev. Lett. 50, 1153 (1983)Google Scholar
  6. F. Mancini, Eur. Phys. J. B 47, 527 (2005)Google Scholar
  7. R.A. Bari, Phys. Rev. B 3, 2662 (1971)Google Scholar
  8. X.Y. Chen, Q. Jiang, W.Z. Shen, C.G. Zhong, J. Magn. Magn. Mat. 262, 258 (2003)Google Scholar
  9. F. Mancini, F.P. Mancini, Condens. Matter Phys. 11, 543 (2008)Google Scholar
  10. K. Maisinger, U. Schollwöck, S. Brehmer, H.J. Mikeska, S. Yamamoto, Phys. Rev. B 58, R5908 (1998)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Dipartimento di Fisica “E.R. Caianiello” – Unità CNISM di SalernoUniversità degli Studi di SalernoBaronissi (SA)Italy
  2. 2.Dipartimento di Fisica and Sezione I.N.F.N.Università degli Studi di PerugiaPerugiaItaly

Personalised recommendations