The European Physical Journal B

, Volume 68, Issue 3, pp 317–328 | Cite as

Internal structure of a quantum soliton and classical excitations due to trap opening

  • Y. CastinEmail author


We analytically solve two problems that may be useful in the context of the recent observation of matter wave bright solitons in a one-dimensional attractive atomic Bose gas. The first problem is strictly beyond mean field: from the Bethe ansatz solution we extract the internal correlation function of the particle positions in the quantum soliton, that is for a fixed center of mass position. The second problem is solved in the limit of a large number of particles, where the mean field theory is asymptotically correct: it deals with the number of excitations created by the opening of the trap, starting from a pure soliton in a weakly curved harmonic potential.


03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations 03.75.Hh Static properties of condensates; thermodynamical, statistical, and structural properties 03.75.Kk Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. T. Kinoshita, T. Wenger, D.S. Weiss, Science 305, 1125 (2004); Z. Hadzibabic, P. Krüger, M. Cheneau, B. Battelier, J. Dalibard, Nature 441, 1118 (2006)Google Scholar
  2. S. Inouye, M.R. Andrews, J. Stenger, H.-J. Miesner, D.M. Stamper-Kurn, W. Ketterle, Nature 392, 151 (1998); S.L. Cornish, N.R. Claussen, J.L. Roberts, E.A. Cornell, C.E. Wieman, Phys. Rev. Lett. 85, 1795 (2000)Google Scholar
  3. L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles, L. Carr, Y. Castin, C. Salomon, Science 296, 1290 (2002)Google Scholar
  4. K. Strecker, G. Partridge, A. Truscott, R. Hulet, Nature 417, 150 (2002)Google Scholar
  5. I. Mazets, G. Kurizki, Europhys. Lett. 76, 196 (2006)Google Scholar
  6. P. Calabrese, J.-S. Caux, Phys. Rev. Lett. 98, 150403 (2007)Google Scholar
  7. P. Calabrese, J.-S. Caux, J. Stat. Mech., P08032 (2007)Google Scholar
  8. M. Olshanii, Phys. Rev. Lett. 81, 938 (1998)Google Scholar
  9. J.B. Mc Guire, J. Math. Phys. 5, 622 (1964)Google Scholar
  10. M. Gaudin, La fonction d’onde de Bethe (Masson, Paris, 1983)Google Scholar
  11. Y. Castin, C. Herzog, Comptes Rendus de l’Académie des Sciences de Paris 2, 419 (2001)Google Scholar
  12. W. Ketterle, D.S. Durfee, D.M. Stamper-Kurn, in Bose-Einstein condensation in atomic gases, Proceedings of the International School of Physics “Enrico Fermi", Course CXL, edited by M. Inguscio, S. Stringari and C.E. Wieman (IOS Press, Amsterdam, 1999), pp. 67–176Google Scholar
  13. F. Calogero, A. Degasparis, Phys. Rev. A 11, 265 (1975)Google Scholar
  14. The calculation was done independently by Christopher Herzog Herzog, since the result of Calogero was at that time unknown to the authors of HerzogGoogle Scholar
  15. We also used the property \(\frac{d}{dX} F(X,X)= 2\partial_X F(X,X) \) where F(X,Y) is the function over which \(\partial_X \partial_Y\) acts in the right hand side of (45)Google Scholar
  16. One performs the change of variable Y=X+Z in the integral over Y, then one exchanges the order of the integration, integrating first over X (which can be done after the change of variable u=eX). One is left with the integral over \(\mathbb{R}\) of Z(Z+2)/[exp (Z)-1], which is readily expressed in terms of the Zeta function after a series expansion of 1/[exp (Z)-1] in powers of exp (-Z)Google Scholar
  17. One may wonder, for a fixed |μ0|/(ħω), how large N should be to enter the asymptotic regime. In the absence of a detailed analysis, we give here a naive answer: when one uses Bogoliubov theory for the quantum field in presence of the trap, one finds that the ground Bogoliubov mode has an energy exactly equal to ħω, with mode functions u(x)=[ħ/(2mω)]1/2 [(mω/ħ) xφ(x)-φ’(x)] and v(x)=[ħ/(2mω)]1/2 [-(mω/ħ) xφ*(x)-φ’*(x)], where φ(x) is the Gross-Pitaevskii condensate wavefunction normalized to unity and φ’(x) is its derivative. This mode corresponds to the center of mass oscillation. It contributes to the number of non-condensed particles as \(\int_{\mathbb{R}} dx\, |v(x)|^2\), scaling as |μ0|/(ħω) in the small ω limit. The naive requirement is thus |μ0|/(ħω) ≪NGoogle Scholar
  18. There is an abundant literature about mean-field solitons. Restricting to the cold atom context, see e.g. the recent works and references therein: A.D. Martin, C.S. Adams, S.A. Gardiner, Phys. Rev. A 77, 013620 (2008); C. Lee, J. Brand, Europhys. Lett. 73, 321 (2006); A. Gammal, L. Tomio, T. Frederico, Phys. Rev. A 66, 043619 (2002); L. Carr, Y. Castin, Phys. Rev. A 66, 063602 (2002)Google Scholar
  19. C. Gardiner, Phys. Rev. A 56, 1414 (1997)Google Scholar
  20. Y. Castin, R. Dum, Phys. Rev. A 57, 3008 (1998)Google Scholar
  21. A. Sinatra, Y. Castin, E. Witkowska, Phys. Rev. A 75, 033616 (2007)Google Scholar
  22. M. Olshanii (unpublished)Google Scholar
  23. J.-P. Blaizot, G. Ripka, Quantum Theory of Finite Systems, The MIT Press (Cambridge, Massachusetts, 1986)Google Scholar
  24. M. Lewenstein, L. You, Phys. Rev. Lett. 77, 3489 (1996)Google Scholar
  25. R. Kanamoto, H. Saito, M. Ueda, Phys. Rev. Lett. 94, 090404 (2005)Google Scholar
  26. D.J. Kaup, Phys. Rev. A 42, 5689 (1990)Google Scholar
  27. Let us assume that the wavefunction Φ(R) of the center of mass of the gas is a Gaussian wavepacket of width σ, centered in R=0. To obtain in this case a pair correlation ρ(x,y)-ρ(x)ρ(y) close to the one calculated here for a center of mass perfectly localized in R=0, we estimate that the condition \(\sigma< \xi/\sqrt{N}\) should be satisfied, from the expansion \(\rho(x)\simeq \rho(x|0) +\frac{1}{2} \langle R^2\rangle [\partial_R^2\rho(x|R)]_{R=0}\) and \(\rho(x,y)\simeq \rho(x,y|0) +\frac{1}{2} \langle R^2\rangle [\partial_R^2\rho(x,y|R)]_{R=0}\), where 〈R2〉 is the expectation value in the wavefunction Φ(R). Starting with a harmonically trapped gas in its internal plus center of mass ground state, as discussed in Weiss, one may change the scattering length after trap opening to adiabatically increase the soliton size, in order to decrease \(\sqrt{N}\sigma /\xi\) Google Scholar
  28. C. Weiss, Y. Castin, arXiv:0806.3395 (2008) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Laboratoire Kastler Brossel, École Normale Supérieure, UPMC and CNRSParis Cedex 05France

Personalised recommendations