Advertisement

The European Physical Journal B

, Volume 68, Issue 3, pp 309–315 | Cite as

Role of the attractive intersite interaction in the extended Hubbard model

  • F. Mancini
  • F. P. Mancini
  • A. NaddeoEmail author
Article

Abstract

We consider the extended Hubbard model in the atomic limit on a Bethe lattice with coordination number z. By using the equations of motion formalism, the model is exactly solved for both attractive and repulsive intersite potential V. By focusing on the case of negative V, i.e., attractive intersite interaction, we study the phase diagram at finite temperature and find, for various values of the filling and of the on-site coupling U, a phase transition towards a state with phase separation. We determine the critical temperature as a function of the relevant parameters, U/|V|, n and z and we find a reentrant behavior in the plane (U/|V|, T). Finally, several thermodynamic properties are investigated near criticality.

PACS

71.10.Fd Lattice fermion models (Hubbard model, etc.) 71.10.-w Theories and models of many-electron systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Aimi, M. Imada, J. Phys. Soc. Jpn 76, 113708 (2007)Google Scholar
  2. A.S. Alexandrov, P.E. Kornilovitch, J. Phys.: Cond. Matt. 14, 5337 (2002)Google Scholar
  3. S. Robaszkiewicz, Acta Phys. Pol. A 45, 289 (1974); K. Rosciszewski, A.M. Oles, J. Phys.: Cond. Matt. 15, 8363 (2003); Y.Z. Zhang, T. Minh-Tien, V. Yushankhai, P. Thalmeier, Eur. Phys. J. B 44, 265 (2005)Google Scholar
  4. J. Solyom, Adv. Phys. 28, 201 (1979)Google Scholar
  5. B. Fourcade, G. Sproken, Phys. Rev. B 29, 5089 (1984)Google Scholar
  6. A. Luther, I. Peschel, Phys. Rev. B 9, 2911 (1974); J. Voit, Phys. Rev. B 45, 4027 (1992).Google Scholar
  7. L. Milas del Bosch, L.M. Falicov, Phys. Rev. B 37, 6073 (1988); B. Fourcade, G. Sproken, Phys. Rev. B 29, 5096 (1984)Google Scholar
  8. A.W. Sandvik, L. Balents, D.K. Campbell, Phys. Rev. Lett. 92, 236401 (2004); K.M. Tam, S.W. Tsai, D.K. Campbell, Phys. Rev. Lett. 96, 036408 (2006); S. Glocke, A. Klumper, J. Sirker, Phys. Rev. B 76, 155121 (2007)Google Scholar
  9. V.J. Emery, Phys. Rev. B 14, 2989 (1976); M. Fowler, Phys. Rev. B 17, 2989 (1978)Google Scholar
  10. F. Mila, X. Zotos, Europhys. Lett. 24, 133 (1993); K. Penc, F. Mila, Phys. Rev. B 49, 9670 (1994)Google Scholar
  11. H.Q. Lin, D.K. Campbell, R.T. Clay, Chinese J. Phys. 38, 1 (2000); A.T. Hoang, P. Thalmeier, J. Phys.: Condens. Matt. 14, 6639 (2002); N.H. Tong, S.Q. Shen, R. Bulla, Phys. Rev. B 70, 085118 (2004)Google Scholar
  12. A. Avella, F. Mancini, Eur. Phys. J. B 41, 149 (2004)Google Scholar
  13. Y. Tomioka, A. Asamitsu, H. Kuwahara, J. Phys. Soc. Jpn 66, 302 (1997); T. Kimura, Y. Tokura, J. Q. Li, Y. Matsui, Phys. Rev. B 58, 11081 (1998); T. Chatterji, G.J. McIntyre, W. Caliebe, R. Suryanarayaman, A. Revcolevschi, Phys. Rev. B 61, 570 (2000)Google Scholar
  14. A.M. Gabovich, A.I. Voitenko, M. Ausloos, Phys. Rep. 367, 583 (2002)Google Scholar
  15. T. Goto, B. Luthi, Adv. Phys. 52, 67 (2003)Google Scholar
  16. M.S. Reis, V.S. Amaral, J.P. Araujo, P.B. Tavares, A.M. Gomes, I.S. Oliveira, Phys. Rev. B 71, 144413 (2005)Google Scholar
  17. M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)Google Scholar
  18. H. Seo, C. Hotta, H. Fukuyama, Chem. Rev. 104, 5005 (2004)Google Scholar
  19. E. Dagotto, Nanoscale Phase Separation and Colossal Magnetoresistance (Berlin, Springer-Verlag, 2002)Google Scholar
  20. G. Pawłowski, T. Kazmierczak, Sol. Stat. Comm. 145, 109 (2008)Google Scholar
  21. P.G.J. van Dongen, Phys. Rev. Lett. 74, 182 (1995); R. Pietig, R. Bulla, S. Blawid, Phys. Rev. Lett. 82, 4046 (1999)Google Scholar
  22. T. Misawa, Y. Yamaji, M. Imada, J. Phys. Soc. Jpn 75, 064705 (2006)Google Scholar
  23. T. Itou, K. Kanoda, K. Murata, T. Matsumoto, K. Hirai, T. Takahashi, Phys. Rev. Lett. 93, 216408 (2004)Google Scholar
  24. R.A. Bari, Phys. Rev. B 3, 2662 (1971)Google Scholar
  25. B. Lorenz, Phys. Stat. Sol. (b) 106, K17 (1981)Google Scholar
  26. G. Beni, P. Pincus, Phys. Rev. B 9, 2963 (1974)Google Scholar
  27. R.S. Tu, T.A. Kaplan, Phys. Stat. Sol. (b) 63, 659 (1974)Google Scholar
  28. T.M. Rice, L. Sneddon, Phys. Rev. Lett. 47, 689 (1981)Google Scholar
  29. R. Micnas, S. Robaszkiewicz, K.A. Chao, Phys. Rev. B 29, 2784 (1984)Google Scholar
  30. R.J. Bursill, C.J. Thompson, J. Phys. A 26, 4497 (1993)Google Scholar
  31. M. Bartkowiak, J.A. Henderson, J. Oitmaa, P.E. de Brito, Phys. Rev. B 51, 14077 (1995); E. Halvorsen, M. Bartkowiak, Phys. Rev. B 63, 014403 (2000)Google Scholar
  32. J. Jedrzejewski, Physica A 205, 702 (1994); C. Borgs, J. Jedrzejewski, R. Kotecky, J. Phys. A 29, 733 (1996)Google Scholar
  33. F. Mancini, Eur. Phys. J. B 45, 497 (2005); F. Mancini, Eur. Phys. J. B 47, 527 (2005)Google Scholar
  34. F. Mancini, F.P. Mancini, Phys. Rev. E 77, 061120 (2008)Google Scholar
  35. G. Pawłowski, Eur. Phys. J. B 53, 471 (2006)Google Scholar
  36. F. Mancini, F.P. Mancini, A. Naddeo, J. Opt. Adv. Mat. 10, 1688 (2008)Google Scholar
  37. D. Vol\({\rm\breve{c}}\)ko, K.F. Quader, e-print arXiv:0710.0023 Google Scholar
  38. D. Jaksch, Nature 442, 147 (2006)Google Scholar
  39. F. Mancini, Europhys. Lett. 70, 485 (2005)Google Scholar
  40. F. Mancini, A. Naddeo, Phys. Rev. E 74, 061108 (2006)Google Scholar
  41. F. Mancini, A. Avella, Eur. Phys. J. B 36, 37 (2003); F. Mancini, A. Avella, Adv. Phys. 53, 537 (2004)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Dipartimento di Fisica “E. R. Caianiello”, Unità CNISM di SalernoUniversità degli Studi di SalernoBaronissi (SA)Italy
  2. 2.Dipartimento di Fisica and Sezione I.N.F.N.Università degli Studi di PerugiaPerugiaItaly
  3. 3.Unità CNISM di Salerno, Dipartimento di Fisica “E. R. Caianiello”Università degli Studi di SalernoBaronissi (SA)Italy

Personalised recommendations