The European Physical Journal B

, Volume 65, Issue 3, pp 395–402 | Cite as

Communities recognition in the Chesapeake Bay ecosystem by dynamical clustering algorithms based on different oscillators systems

Article

Abstract

We have recently introduced [Phys. Rev. E 75, 045102(R) (2007); AIP Conference Proceedings 965, 2007, p. 323] an efficient method for the detection and identification of modules in complex networks, based on the de-synchronization properties (dynamical clustering) of phase oscillators. In this paper we apply the dynamical clustering tecnique to the identification of communities of marine organisms living in the Chesapeake Bay food web. We show that our algorithm is able to perform a very reliable classification of the real communities existing in this ecosystem by using different kinds of dynamical oscillators. We compare also our results with those of other methods for the detection of community structures in complex networks.

PACS

89.75.Hc Networks and genealogical trees 05.45.Xt Synchronization; coupled oscillators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.C. de Ruiter, V. Wolters, J.C. Moore, K.O. Winemiller, Science 309, 68 (2005)CrossRefGoogle Scholar
  2. 2.
    L. Danon, A. Diaz-Guilera, J. Duch, A. Arenas, J. Stat. Mechanics: Theory and Experiment P09008 (2005)Google Scholar
  3. 3.
    V. Gudkovl, J.E. Johnson, S. Nussinov (2002), e-print arXiv: cond-mat/0209111; V. Gudkovl, S. Nussinov (2002), e-print arXiv:cond-mat/0209112; V. Gudkovl, V. Montealegre, S. Nussinov and Z. Nussinov (2007), e-print arXiv:0710.0550Google Scholar
  4. 4.
    S. Boccaletti, M. Ivanchenko, V. Latora, A. Pluchino, A. Rapisarda, Phys. Rev. E 75, 045102(R) (2007)Google Scholar
  5. 5.
    A. Pluchino, A. Rapisarda, V. Latora, AIP Conference Proceedings 965, 2007, p. 323Google Scholar
  6. 6.
    S. Boccaletti, J. Kurths, D.L. Valladares, G. Osipov, C.S. Zhou, Phys. Rep. 366, 1 (2002); S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Phys. Rep. 424, 175 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    M. Chavez, D. Hwang, A. Amann, H. Hentschel, N. Gand, S. Boccaletti, Phys. Rev. Lett. 94, 218701 (2005)Google Scholar
  8. 8.
    M. Girvan, M.E.J. Newman, Proc. Natl. Acad. Sci. USA 99, 7821 (2002); M.E.J. Newman, M. Girvan, Phys. Rev. E 69, 026113 (2004)MATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    D. Baird, R.E. Ulanowicz, Ecol. Mon. 59, 364, 329 (1989)CrossRefGoogle Scholar
  10. 10.
    M. Girvan, M.E.J. Newman, Proc. Natl. Acad. Sci. USA 99, 7821 (2002)MATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    S. Fortunato, V. Latora, M. Marchiori, PRE, 70, 056104 (2004)Google Scholar
  12. 12.
    Y. Kuramoto, in International Symposium on Mathematical Problems in Theoretical Physics, Vol. 39 of Lecture Notes in Physics, edited by H. Araki (Springer-Verlag, Berlin, 1975)CrossRefGoogle Scholar
  13. 13.
    Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer, Berlin, 1984)MATHGoogle Scholar
  14. 14.
    S. H. Strogatz, Physica D 143, 1 (2000)MATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    A. Pluchino, V. Latora, A. Rapisarda, Int. J. Mod. Phys. C 16, 515 (2005)MATHCrossRefADSGoogle Scholar
  16. 16.
    R. Hegselmann, U. Krause, J.A.S.S.S. 5, 2 (2002)Google Scholar
  17. 17.
    S. Fortunato, M. Barthlemy, PNAS 104, 36 (2007)CrossRefADSGoogle Scholar
  18. 18.
    E.A. Leicht, M.E.J. Newman, Phys. Rev. Lett. 100, 118703 (2008)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Dipartimento di Fisica e AstronomiaUniversitá di Catania, and INFN sezione di CataniaCataniaItaly

Personalised recommendations