Advertisement

Accounting for the energies and entropies of kinesin’s catalytic cycle

Article

Abstract

When the processive motor protein kinesin walks along the biopolymer microtubule it can occasionally make a backward step. Recent single molecule experiments on moving kinesin have revealed that the forward-to-backward step ratio decreases exponentially with the load force. Carter and Cross (Nature 435, 308-312, 2005) found that this ratio tightly followed 802 × exp[−0.95F], where F is the load force in piconewtons. A straightforward analysis of a Brownian step leads to L/(2k B T) as the factor in front of the load force, where L is the 8 nm stepsize, k B is the Boltzmann constant, and T is the temperature. The factor L/(2k B T) does indeed equal 0.95 pN−1. The same analysis shows how the 802 prefactor derives from the power stroke energy G as exp[G/(2k B T)]. There are indications that the power stroke derives from the entropically driven coiling of the 30 amino acid neck linker that connects the two kinesin heads. This idea is examined and consequences are deduced.

PACS

87.16.Nn Motor proteins 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion 

References

  1. 1.
    J. Howard, Mechanics of motor proteins and the cytoskeleton (Sinauer Associates, Sunderland MA 2001) pp. 246–251Google Scholar
  2. 2.
    N.J. Carter, R.A. Cross, Nature 435, 308 (2005)CrossRefADSGoogle Scholar
  3. 3.
    M. Nishiyama, H. Higuchi, T. Yanagida, Nature Cell Biol. 4, 790 (2002)CrossRefGoogle Scholar
  4. 4.
    M. Bier, Phys. Rev. Lett. 91, 1481041 (2003)CrossRefGoogle Scholar
  5. 5.
    M. Bier, Contemporary Phys. 46, 41 (2005)CrossRefADSGoogle Scholar
  6. 6.
    S.J. Hagen, L. Qiu, S.A. Pabit, J. Phys.: Condensed Matter 17, 1503 (2005)CrossRefADSGoogle Scholar
  7. 7.
    K. Svoboda, C.F. Schmidt, B.J. Schnapp, S.M. Block, Nature 365, 721 (1993)CrossRefADSGoogle Scholar
  8. 8.
    M. Bier, BioSystems 88, 301 (2007)CrossRefGoogle Scholar
  9. 9.
    R.A. Cross, Trends in Biochem. Sci. 29, 301 (2004)CrossRefMathSciNetGoogle Scholar
  10. 10.
    S. Rice, Y. Cui, C. Sindelar, N. Naber, M. Matuska, R. Vale, R. Cooke, Biophys. J. 84, 1844 (2003)CrossRefADSGoogle Scholar
  11. 11.
    Y. Taniguchi, M. Nishiyama, Y. Ishii, T. Yanagida, Nature Chem. Biol. 1, 342 (2005)CrossRefGoogle Scholar
  12. 12.
    R.D. Vale, R.A. Milligan, Sci. 288, 88 (2000)CrossRefADSGoogle Scholar
  13. 13.
    Yu.A. Grosberg, A.R. Khokhlov, Giant Molecules (Academic Press, San Diego 1997) pp. 69–91Google Scholar
  14. 14.
    C. Tanford, K. Kawahara, S. Lapanje, J. Biol. Chem. 241, 1921 (1966)Google Scholar
  15. 15.
    T. Ohashi, C.A. Hale, P.A.J. De Boer, H.P. Erickson, J. Bacteriology, 184, 4313 (2002)CrossRefGoogle Scholar
  16. 16.
    K. Kawaguchi, S. Ishiwata, Biochem. and Biophys. Res. Comm. 272, 895 (2000)CrossRefGoogle Scholar
  17. 17.
    S.M. Block, Biophys. J. 92, 29862995 (2007)CrossRefGoogle Scholar
  18. 18.
    P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, NY 1979)Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  1. 1.Department of PhysicsEast Carolina UniversityGreenvilleUSA

Personalised recommendations