The European Physical Journal B

, Volume 63, Issue 3, pp 303–314 | Cite as

Scaling and allometry in the building geometries of Greater London

  • M. BattyEmail author
  • R. Carvalho
  • A. Hudson-Smith
  • R. Milton
  • D. Smith
  • P. Steadman
Topical issue dedicated to ECCS2007 - Dresden


Many aggregate distributions of urban activities such as city sizes reveal scaling but hardly any work exists on the properties of spatial distributions within individual cities, notwithstanding considerable knowledge about their fractal structure. We redress this here by examining scaling relationships in a world city using data on the geometric properties of individual buildings. We first summarise how power laws can be used to approximate the size distributions of buildings, in analogy to city-size distributions which have been widely studied as rank-size and lognormal distributions following Zipf [Human Behavior and the Principle of Least Effort (Addison-Wesley, Cambridge, 1949)] and Gibrat [Les Inégalités Économiques (Librarie du Recueil Sirey, Paris, 1931)]. We then extend this analysis to allometric relationships between buildings in terms of their different geometric size properties. We present some preliminary analysis of building heights from the Emporis database which suggests very strong scaling in world cities. The data base for Greater London is then introduced from which we extract 3.6 million buildings whose scaling properties we explore. We examine key allometric relationships between these different properties illustrating how building shape changes according to size, and we extend this analysis to the classification of buildings according to land use types. We conclude with an analysis of two-point correlation functions of building geometries which supports our non-spatial analysis of scaling.


89.65.Lm Urban planning and construction 89.75.Da Systems obeying scaling laws 89.75.Fb Structures and organization in complex systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. B.J.L. Berry, Pap. Proc. Reg. Sci. Assoc. 13, 147 (1964) ADSGoogle Scholar
  2. G.K. Zipf, Human Behavior and the Principle of Least Effort (Addison-Wesley, Cambridge, MA, 1949) Google Scholar
  3. A. Anas, R. Arnott, K. Small, J. Econ. Lit. 36, 1426 (1998) Google Scholar
  4. M. Batty, P.A. Longley, Fractal Cities: A Geometry of Form and Function (Academic Press, London and San Diego, CA, 1994) Google Scholar
  5. R. Bon, Ekistics 36, 270 (1973) Google Scholar
  6. P. Steadman, Constr. Manage. Econ. 24, 755 (2006) CrossRefGoogle Scholar
  7. R. Carvalho, A. Penn, Physica A 332, 539 (2004) CrossRefADSGoogle Scholar
  8. C. Kuhnert, D. Helbing, G. West, Physica A 363, 96 (2006) CrossRefADSGoogle Scholar
  9. S. Lammer, B. Gehlsen, D. Helbing, Physica A 363, 89 (2006) CrossRefADSGoogle Scholar
  10. P. Cowan, D. Fine, Reg. Stud. 3, 235 (1969) CrossRefGoogle Scholar
  11. R. Bon, Qual. Quan. 13, 307 (1979) Google Scholar
  12. H. Samaniego, M.E. Moses, Cities as Organisms: Allometric Scaling of Urban Road Networks, Department of Computer Science (University of New Mexico, Albuquerque, NM, 2007) Google Scholar
  13. G.B. West, J.H. Brown, B.J. Enquist, Science 284, 1677 (1999) CrossRefADSMathSciNetGoogle Scholar
  14. L.M.A. Bettencourt, J. Lobo, D. Helbing, C. Kühnert, G.B. West, Proc. Nat. Acad. Sci. 104, 7301 (2007) CrossRefADSGoogle Scholar
  15. A. Isalgue, H. Coch, R. Serra, Physica A, 382, 643 (2007) Google Scholar
  16. A.J. Lotka, J. Wash. Acad. Sci. 16, 317 (1926) Google Scholar
  17. V. Pareto, Cours d'Économie Politique (Droz, Genève, Switzerland, 1896) Google Scholar
  18. R. Gibrat, Les Inégalités Économiques (Librarie du Recueil Sirey, Paris, 1931) Google Scholar
  19. L.A. Adamic, B.A. Huberman, Glottometrics 3, 143 (2003) Google Scholar
  20. M.E.J. Newman, Cont. Phys. 46, 323 (2005) CrossRefADSGoogle Scholar
  21. A. Blank, S. Solomon, Physica A 287, 279 (2000) CrossRefADSMathSciNetGoogle Scholar
  22. X. Gabaix, Quart. J. Econ. 114, 739 (1999) zbMATHCrossRefGoogle Scholar
  23. A. Clauset, C.R. Shalizi, M.E.J. Newman,, (accessed December 3rd 2007) (2007) Google Scholar
  24. W. Thompson, D'Arcy, On Growth and Form, abridged edn. (Cambridge University Press, Cambridge, UK, 1917, 1971) Google Scholar
  25. J.T. Bonner, Why Size Matters: From Bacteria to Blue Whale (Princeton University Press, Princeton, NJ, 2006) Google Scholar
  26. J.S. Huxley, Problems of Relative Growth (The Johns Hopkins University Press, Baltimore, MD, 1932, 1993) Google Scholar
  27. L. Von Bertalanffy, General Systems Theory (Penguin Books, Harmondsworth, UK, 1973) Google Scholar
  28. M. Batty, A. Hudson-Smith, Arch. Des. 75, 42 (2005) Google Scholar
  29. P. Steadman, H.R. Bruhns, S. Holtier, B. Gakovic, P.A. Rickaby, F.E. Brown, Env. Plan. B 27, 73 (2000) CrossRefGoogle Scholar
  30. B.D. Ripley, J. Roy. Stat. Soc. Series B 39, 172 (1977) MathSciNetGoogle Scholar
  31. D. Stoyan, Basic Ideas of Spatial Statistics, in: edited by K. Mecke, D. Stoyan, Statistical Physics and Spatial Statistics (Springer-Verlag, Heidelberg, DE, 2000) pp. 3–21 Google Scholar
  32. K. Kerscher, I. Szapudi, A.S. Szalay, Astrophys. J. 535, L13 (2000) Google Scholar
  33. B.D. Ripley, J. App. Prob. 13, 255 (1976) zbMATHCrossRefMathSciNetGoogle Scholar
  34. R. Carvalho, M. Batty, J. Stat. Mech. 10, P10012, 1 (2006) Google Scholar
  35. M. Batty, Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals (The MIT Press, Cambridge, MA, 2005) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • M. Batty
    • 1
    Email author
  • R. Carvalho
    • 2
  • A. Hudson-Smith
    • 1
  • R. Milton
    • 1
  • D. Smith
    • 1
  • P. Steadman
    • 3
  1. 1.Centre for Advanced Spatial Analysis, University College LondonLondonUK
  2. 2.School of Mathematical Sciences, Queen Mary, University of LondonLondonUK
  3. 3.Bartlett School of Architecture and Planning, University College LondonLondonUK

Personalised recommendations