Advertisement

The European Physical Journal B

, Volume 63, Issue 1, pp 127–133 | Cite as

Urban traffic from the perspective of dual graph

  • M.-B. HuEmail author
  • R. Jiang
  • Y.-H. Wu
  • W.-X. Wang
  • Q.-S. Wu
Statistical and Nonlinear Physics

Abstract.

Urban traffic is modeled using a dual graph representation of the urban transport network, where roads are mapped to nodes and intersections are mapped to links. The proposed model considers both the navigation of the vehicles in the network and the motion of the vehicles along roads. The vehicle-holding ability of roads and the vehicle-turning ability at intersections are also incorporated. The overall handling ability of the system can be quantified by a phase transition from free flow to congestion. Simulations show that the system's handling ability greatly depends on the topology of the transportation network. In general, a well-planned grid can hold more vehicles, and its overall handling ability is much greater than that of a growing self-organized network.

PACS.

45.70.Vn Granular models of complex systems; traffic flow 89.75.Hc Networks and genealogical trees 05.70.Fh Phase transitions: general studies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Nagel, M. Schreckenberg, J. Phys. I France 2, 2221 (1992) CrossRefGoogle Scholar
  2. D. Helbing, B.A. Huberman, Nature (London) 396, 738 (1998) CrossRefADSGoogle Scholar
  3. B.S. Kerner, The Physics of Traffic (Springer, Berlin, New York, 2004) Google Scholar
  4. D. Helbing, Rev. Mod. Phys. 73, 1067 (2001) CrossRefADSGoogle Scholar
  5. T. Nagatani, Rep. Prog. Phys. 65, 1331 (2002) CrossRefADSGoogle Scholar
  6. K. Nagel, P. Wagner, R. Woesler, Oper. Res. 51, 681 (2003) CrossRefMathSciNetGoogle Scholar
  7. O. Biham, A.A. Middleton, D. Levine, Phys. Rev. A 46, R6124 (1992) Google Scholar
  8. D. Chowdhury, L. Santen, A. Schadschneider, Phys. Rep. 329, 199 (2000) CrossRefADSMathSciNetGoogle Scholar
  9. A. Schadschneider, Physica A 313, 153 (2002) CrossRefADSMathSciNetzbMATHGoogle Scholar
  10. S. Maerivoet, B. De Moor, Phys. Rep. 419, 1 (2005) CrossRefADSMathSciNetGoogle Scholar
  11. D.J. Watts, S.H. Strogatz, Nature (London) 393, 440 (1998) CrossRefADSGoogle Scholar
  12. R. Albert, H. Jeong, A.L. Barabási, Nature (London) 401, 130 (1999) CrossRefADSGoogle Scholar
  13. B. Jiang, C. Claramunt, Environ. Plan. B: Plan. Des. 31, 151 (2004) CrossRefGoogle Scholar
  14. M. Rosvall, A. Trusina, P. Minnhagen, K. Sneppen, Phys. Rev. Lett. 94, 028701 (2005) CrossRefADSGoogle Scholar
  15. P. Crucitti, V. Latora, S. Porta, Phys. Rev. E 73, 036125 (2006) CrossRefADSGoogle Scholar
  16. P. Crucitti, V. Latora, S. Porta, Chaos 16, 015113 (2006) CrossRefADSGoogle Scholar
  17. S. Porta, P. Crucitti, V. Latora, Physica A 369, 853 (2006) CrossRefADSGoogle Scholar
  18. V. Kalapala, V. Sanwalani, A. Clauset, C. Moore, Phys. Rev. E 73, 026130 (2006) CrossRefADSGoogle Scholar
  19. J. Sienkiewicz, J.A. Holyst, Phys. Rev. E 72, 046127 (2005) CrossRefADSGoogle Scholar
  20. P. Li, X. Xiong, Z.L. Qiao et al., Chin. Phys. Lett. 23, 384 (2006) ADSGoogle Scholar
  21. P. Sen, S. Dasgupta, A. Chatterjee et al., Phys. Rev. E 67, 036106 (2003) CrossRefADSGoogle Scholar
  22. K.P. Li, Z.Y. Gao, B.H. Mao, Inter. J. Mod. Phys. C 17, (2006) 1339 Google Scholar
  23. W. Li, X. Cai, Phys. Rev. E 69, 046106 (2004) CrossRefADSGoogle Scholar
  24. Y. Moreno, R. Pastor-Satorras, A. Vazquez et al., Europhys. Lett. 62, 292 (2003) CrossRefADSGoogle Scholar
  25. P. Echenique, J. Gómez-Gardeñes, Y. Moreno, Europhys. Lett. 71, 325 (2005) CrossRefADSGoogle Scholar
  26. J.J. Wu, Z.Y. Gao, H.J. Sun et al., Europhys. Lett. 74, 560 (2006) CrossRefADSGoogle Scholar
  27. M.B. Hu, W.X. Wang, R. Jiang et al., Phys. Rev. E 75, 036102 (2007) CrossRefADSGoogle Scholar
  28. Z. Liu, M.B. Hu, R. Jiang et al., Phys. Rev. E 76, 037101 (2007) CrossRefADSGoogle Scholar
  29. B. Hiller, J. Hanson J., The Social Logic of Space (Cambridge University Press, Cambridge, UK, 1984) Google Scholar
  30. B. Hiller, Space is the Machine: A Configurational Theory of Architecture (Cambridge University Press, Cambridge, UK, 1996) Google Scholar
  31. A. Penn, B. Hillier, D. Banister, J. Xu, Enviro. Plan. B 25, 59 (1998) CrossRefGoogle Scholar
  32. R.V. Sole, S. Valverde, Physica A 289, 595 (2001) CrossRefADSzbMATHGoogle Scholar
  33. A. Arenas, A. Díaz-Guilera, R. Guimerá, Phys. Rev. Lett. 86, 3196 (2001) CrossRefADSGoogle Scholar
  34. B. Tadić, S. Thurner, G.J. Rodgers, Phys. Rev. E 69, 036102 (2004) CrossRefADSGoogle Scholar
  35. L. Zhao, Y.C. Lai, K. Park, N. Ye, Phys. Rev. E 71, 026125 (2005) CrossRefADSGoogle Scholar
  36. W.X. Wang, B.H. Wang, C.Y. Yin et al., Phys. Rev. E 73, 026111 (2006) CrossRefADSGoogle Scholar
  37. R. Guimerá, A. Díaz-Guilera, F. Vega-Redondo et al., Phys. Rev. Lett. 89, 248701 (2002) CrossRefADSGoogle Scholar
  38. J. Duch, A. Arenas, Phys. Rev. Lett. 96, (2006) 218702; J. Duch, A. Arenas, Eur. Phys. J. Special Topics 143, 253 (2007) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • M.-B. Hu
    • 1
    • 2
    Email author
  • R. Jiang
    • 1
  • Y.-H. Wu
    • 2
  • W.-X. Wang
    • 3
  • Q.-S. Wu
    • 1
  1. 1.School of Engineering Science, University of Science and Technology of ChinaHefeiP.R. China
  2. 2.Department of Mathematics and StatisticsCurtin University of TechnologyPerthAustralia
  3. 3.Department of Electronic EngineeringArizona State UniversityTempeUSA

Personalised recommendations