The European Physical Journal B

, Volume 63, Issue 3, pp 295–301 | Cite as

Hierarchy, cities size distribution and Zipf's law

Topical issue dedicated to ECCS2007 - Dresden

Abstract.

We show that a hierarchical cities structure can be generated by a self-organized process which grows with a bottom-up mechanism, and that the resulting distribution is power law. First we analytically prove that the power law distribution satisfies the balance between the offer of the city and the demand of its basin of attraction, and that the exponent in the Zipf's law corresponds to the multiplier linking the population of the central city to the population of its basin of attraction. Moreover, the corresponding hierarchical structure shows a variable spanning factor, and the population of the cities linked to the same city up in the hierarchy is variable as well. Second a stochastic dynamic spatial model is proposed, whose numerical results confirm the analytical findings. In this model, inhabitants minimize the transportation cost, so that the greater the importance of this cost, the more stable is the system in its microscopic aspect. After a comparison with the existent methods for the generation of a power law distribution, conclusions are drawn on the connection of hierarchical structure, and power law distribution, with the functioning of the system of cities.

PACS.

89.75.Da Systems obeying scaling laws 89.75.Fb Structures and organization in complex systems 89.65.Lm Urban planning and construction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Mitzenmacher, in Proceedings of the 39th Annual Al lerton Conference on Communication, Control, and Computing (University of Illinois, Urbana-Champagne, 2001), pp. 182–191 Google Scholar
  2. G.B. West, J.H. Brown, B.J. Enquist, Science 276, 122 (1997) CrossRefGoogle Scholar
  3. J.R. Banavar, J. Damuth, A. Maritan, A. Rinaldo, PNAS 99, 10506 (2002) MATHCrossRefADSGoogle Scholar
  4. V. Gafiychuk, I. Lubashevsky, A. Stosyk, Preprint (2000), nlin/0004033 Google Scholar
  5. V.V. Gafiychuk, I.A. Lubashevsky, Y.L. Klimontovich, Preprint (1999), adapt-org/9903004 Google Scholar
  6. M.J. Woldenberg, B.J.L. Berry, J. Regional Sci. 7, 129 (1967) CrossRefGoogle Scholar
  7. W. Christaller, Central Places in Southern Germany (Prentice Hall, Englewood Cliffs, N.J., 1966), translated by C.W. Baskin Google Scholar
  8. M.J. Beckman, Economic Development and Cultural Change 6, 243 (1958) CrossRefGoogle Scholar
  9. M. Beckman, J.C. McPherson, J. Regional Sci. 10, 25 (1970) CrossRefGoogle Scholar
  10. M. Batty, in Hierarchy in natural and social sciences, edited by D. Pumain, Methodos Series, Vol. 3 (Springer, Berlin, 2006) Google Scholar
  11. D. Pumain, in Hierarchy in natural and social sciences, edited by D. Pumain, Methodos Series, Vol. 3 (Springer, Berlin, 2006) Google Scholar
  12. A. Bretagnolle, E. Daudé, D. Pumain, Cybergeo, Revue Européenne de Géographie 335, 1 (2006) Google Scholar
  13. B.J.L. Berry, W.L. Garrison, Economic Geography 34, 304 (1958) CrossRefGoogle Scholar
  14. H. Ogawa, Urban Studies 35, 45 (1998) CrossRefMathSciNetGoogle Scholar
  15. J.B. Parr, Economic Geography 63, 223 (1987) CrossRefGoogle Scholar
  16. A. Lösch, The Economics of Location (Yale University Press, New Haven, 1954), translated by W.H. Woglom, W.F. Stolper Google Scholar
  17. J. Henderson, Am. Econo. Rev. LXIV, 640 (1974) Google Scholar
  18. P. Krugman, Geography and Trade (MIT Press, Cambridge, Massachusetts, 1991) Google Scholar
  19. D. Pumain, F. Paulus, C. Vacchiani-Marcuzzo, J. Lobo, Cybergeo, Revue Européenne de Géographie 343 (2006) Google Scholar
  20. M. Batty, Working Papers Series 64, CASA (2003) Google Scholar
  21. M. Batty, Urban Modeling: Algorithms, Calibrations, Predictions (Cambridge University Press, Cambridge, 1976) Google Scholar
  22. H.A. Simon, Proc. Am. Phil. Soc. 106, 467 (1962) Google Scholar
  23. D. Pumain, Geografiska Annaler 82B, 73 (2000) CrossRefGoogle Scholar
  24. G. Duranton, Centre for Economic Performance-Discussion Papers 550, 1 (2002) Google Scholar
  25. X. Gabaix, Quarterly J. Economics CXIV, 739 (1999) Google Scholar
  26. D. Sornette, Phys. Rev. E 57, 4811 (1998) CrossRefADSGoogle Scholar
  27. A. Blank, S. Solomon, Published on line URL: http://xxx.tau.ac.il/html/cond-mat/0003240 (2000) Google Scholar
  28. M. Marsili, Y.C. Zhang, Phys. Rev. Lett. 80(12), 2741 (1998) CrossRefGoogle Scholar
  29. F. Semboloni, F. Leyvraz, Physica A 352, 612 (2005) CrossRefADSGoogle Scholar
  30. G. Zipf, Human Behavior and the Principle of Least Effort (Addison Wesley, Cambridge, MA., 1949) Google Scholar
  31. P. Krugman, J. Jap. Int. Econ. 10, 399 (1996) CrossRefGoogle Scholar
  32. R. Axtell, R. Florida, Computing in Economics and Finance 2001 154, Society for Computational Economics (2001), available at http://ideas.repec.org/p/sce/scecf1/154.html Google Scholar
  33. C. Andersson, A. Hellervik, K. Lindgren, Physica A 345, 227 (2005) ADSGoogle Scholar
  34. A. Barabasi, R. Albert, Science 286, 509 (1999) CrossRefMathSciNetGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Town and Regional Planning, and Center for the Study of Complex DynamicsUniversity of FlorenceFirenzeItaly

Personalised recommendations