The European Physical Journal B

, Volume 65, Issue 3, pp 425–433 | Cite as

The effect of low-frequency oscillations on cardio-respiratory synchronization

Observations during rest and exercise
  • D. A. Kenwright
  • A. Bahraminasab
  • A. Stefanovska
  • P. V. E. McClintock


We show that the transitions which occur between close orders of synchronization in the cardiorespiratory system are mainly due to modulation of the cardiac and respiratory processes by low-frequency components. The experimental evidence is derived from recordings on healthy subjects at rest and during exercise. Exercise acts as a perturbation of the system that alters the mean cardiac and respiratory frequencies and changes the amount of their modulation by low-frequency oscillations. The conclusion is supported by numerical evidence based on a model of phase-coupled oscillators, with white noise and lowfrequency noise. Both the experimental and numerical approaches confirm that low-frequency oscillations play a significant role in the transitional behavior between close orders of synchronization.


05.45.Xt Synchronization; coupled oscillators Heart and lung dynamics 87.18.Tt Noise in biological systems 05.45.Tp Time series analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Hales, Statistical Essays II, Hæmastatisticks (Innings Manby, London, 1773)Google Scholar
  2. 2.
    A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization-A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2001)MATHGoogle Scholar
  3. 3.
    C. Schäfer, M.G. Rosenblum, J. Kurths, H.H. Abel, Nature 392, 239 (1998)CrossRefADSGoogle Scholar
  4. 4.
    M.B. Lotrič, A. Stefanovska, Physica A 283, 451 (2000)CrossRefADSGoogle Scholar
  5. 5.
    A. Stefanovska, M. Bračič Lotrič, S. Strle, H. Haken, Physiol. Meas. 22, 535 (2001)CrossRefGoogle Scholar
  6. 6.
    A. Stefanovska, Nonlinear Phenomena in Complex Systems 5, 462 (2002)MathSciNetGoogle Scholar
  7. 7.
    C. Schäfer, M.G. Rosenblum, H.H. Abel, J. Kurths, Phys. Rev. E 60, 857 (1999)CrossRefADSGoogle Scholar
  8. 8.
    S. Rzeczinski, N.B. Janson, A.G. Balanov, P.V.E. McClintock, Phys. Rev. E 66, 051909 (2002)CrossRefADSGoogle Scholar
  9. 9.
    A. Stefanovska, H. Haken, P.V.E. McClintock, M. Hožič, F. Bajrović, S. Ribarič, Phys. Rev. Lett. 85, 4831 (2000)CrossRefADSGoogle Scholar
  10. 10.
    B. Musizza, A. Stefanovska, P.V.E. McClintock, M. Paluš, J. Petrovčič, S. Ribarič, F.F. Bajrović, J. Physiol. 580, 315 (2007)CrossRefGoogle Scholar
  11. 11.
    M. Entwistle, A. Bandrivskyy, B. Musizza, A. Stefanovska, P.V.E. McClintock, A. Smith, Br. J. Anæsth. 93, 608P (2004)Google Scholar
  12. 12.
    E. Toledo, S. Akselrod, I. Pinhas, D. Aravot, Med. Eng. & Phys. 24, 45 (2002)CrossRefGoogle Scholar
  13. 13.
    D.L. Eckberg, J. Physiol. (Lond.) 548, 339 (2003)Google Scholar
  14. 14.
    D.C. Galletly, P.D. Larsen, Br. J. Anæsth. 79, 35 (1997)Google Scholar
  15. 15.
    Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer-Verlag, Berlin, 1984)MATHGoogle Scholar
  16. 16.
    P. Tass, M.G. Rosenblum, J. Weule, J. Kurths, A. Pikovsky, J. Volkmann, A. Schnitzler, H.J. Freund, Phys. Rev. Lett. 81, 3291 (1998)CrossRefADSGoogle Scholar
  17. 17.
    L. Glass, Nature 410, 277 (2001)CrossRefADSGoogle Scholar
  18. 18.
    A. Stefanovska, M. Bračič, Contemp. Phys. 40, 31 (1999)CrossRefADSGoogle Scholar
  19. 19.
    R. Mrowka, A. Patzak, M. Rosenblum, Int. J. Bifurcation and Chaos. 10, 2479 (2000)MATHGoogle Scholar
  20. 20.
    R. Bartsch, J.W. Kantelhardt, T. Penzel, S. Havlin, Phys. Rev. Lett. 98, 054102 (2007)CrossRefADSGoogle Scholar
  21. 21.
    M.B. Lotrič, A. Stefanovska, D. Štajer, V. Urbančič-Rovan, Physiol. Meas. 21, 441 (2000)CrossRefGoogle Scholar
  22. 22.
    F.O. Cottin, C. Medigue, P.M. Lepretre, Y. Papelier, J. Koralsztein, V. Billat, Med. Sci. Sports Exerc. 36, 594 (2004)CrossRefGoogle Scholar
  23. 23.
    K. Nomura, Y. Takei, Y. Yanagida, Eur. J. Appl. Physiol. 89, 221 (2003)CrossRefGoogle Scholar
  24. 24.
    D. Morin, D. Viala, J. Neurosci. 22, 4756 (2002)Google Scholar
  25. 25.
    I.G. Malkin, Some Problems in Nonlinear Oscillation Theory (Gostechizdat, Moscow, 1956)Google Scholar
  26. 26.
    M. Paluš, A. Stefanovska, Phys. Rev. E 67, 055201(R) (2003)ADSGoogle Scholar
  27. 27.
    A. Bahraminasab, F. Ghasemi, A. Stefanovska, P.V.E. McClintock, H. Kantz, Phys. Rev. Lett. 100, 084101 (2008)CrossRefADSGoogle Scholar
  28. 28.
    A. Makse, S. Havlin, M. Schwart, H.E. Stanley, Phys. Rev. E 53, 5445 (1996)CrossRefADSGoogle Scholar
  29. 29.
    M.G. Rosenblum, L. Cimponeriu, A. Bezerianos, A. Patzak, R. Mrowka, Phys. Rev. E. 65, 041909 (2002)CrossRefADSGoogle Scholar
  30. 30.
    J. Jamšek, A. Stefanovska, P.V.E. McClintock, Phys. Med. Biol. 49, 4407 (2004)CrossRefGoogle Scholar
  31. 31.
    V.N. Smelyanskiy, D.G. Luchinsky, A. Stefanovska, P.V.E. McClintock, Phys. Rev. Lett. 94, 098101 (2005)CrossRefADSGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • D. A. Kenwright
    • 1
  • A. Bahraminasab
    • 1
  • A. Stefanovska
    • 1
    • 2
  • P. V. E. McClintock
    • 1
  1. 1.Department of PhysicsUniversity of LancasterLancasterUK
  2. 2.Nonlinear Dynamics and Synergetics Group, Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations