Advertisement

The European Physical Journal B

, Volume 63, Issue 3, pp 321–327 | Cite as

Network breakdown “at the edge of chaos” in multi-agent traffic simulations

  • M. Rieser
  • K. Nagel
Topical issue dedicated to ECCS2007 - Dresden

Abstract.

Traffic is highly influenced by network structure and human behaviour. Small changes in the human behaviour can lead to huge changes in the load of a traffic network. Current transportation models do not, and most of them cannot, research such random behaviour but always calculate a steady state. In our multi-agent transport simulation, we frequently observe seemingly random “network breakdowns”, huge traffic jams that spread over a big part of the network, making a normal traffic flow impossible. This paper describes the investigations that were performed on the results of our large-scale multi-agent transport simulations in an attempt to contribute to the better understanding of the dynamic processes in such simulations and, hopefully, better understanding and modelling of the real-world.

PACS.

45.70.Vn Granular models of complex systems; traffic flow 89.40.Bb Land transportation 89.75.-k Complex systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Computational Science – ICCS 2007: 7th International Conference, Vol. 4487–4490 of Lecture Notes in Computer Science, edited by Y. Shi, G.D. v. Albada, J. Dongarra, P.M.A. Sloot (Springer New York, 2007) Google Scholar
  2. U. Harder, M. Paczuski, Physica A, 361(1), 329 (2006) Google Scholar
  3. J.P. Eckmann, E. Moses, D. Sergi, Proc. Nat. Acad. Sci., 101(40), 14333 (2004) Google Scholar
  4. TRANSIMS www page: TRansportation ANalysis, SIMulation System, http://transims.tsasa.lanl.gov/, accessed 2008, (Los Alamos National Laboratory, Los Alamos, NM) Google Scholar
  5. MATSIM www page: MultiAgent Transport SIMulation; http://matsim.org/, accessed 2008 Google Scholar
  6. DYNAMIT/MITSIM www page: http://mit.edu/its, accessed 2008 Google Scholar
  7. DYNASMART www page, http://www.dynasmart.com/, accessed 2007 Google Scholar
  8. R.J.F. Rossetti, R. Liu, in Applications of Agent Technology in Traffic and Transportation, edited by F. Klügl, A. Bazzan, S. Ossowski, Whitestein, Series in Software Agent Technologies and Autonomic Computing (Birkhäuser, 2005), pp. 88–93 Google Scholar
  9. J. Esser, Simulation von Stadtverkehr auf der Basis zellularer Automaten, Ph.D. thesis, University of Duisburg, Germany, 1998. See also http://www.traffic.uni-duisburg.de Google Scholar
  10. D. Helbing, Rev. Mod. Phys. 73, 1067 (2001) CrossRefADSGoogle Scholar
  11. D. Chowdhury, L. Santen, A. Schadschneider, Phys. Rep. 329, 199 (2000) CrossRefADSMathSciNetGoogle Scholar
  12. W. Knospe, L. Santen, A. Schadschneider, M. Schreckenberg, J. Phys. A: Math. Gen., 33, L477 (2000) Google Scholar
  13. O. Biham, A. Middleton, D. Levine, Phys. Rev. A 46(10), R6124 (1992) Google Scholar
  14. F.C. Martínez, J.A. Cuesta, J.M. Molera, R. Brito, Phys. Rev. E 51(2), R835 (1995) Google Scholar
  15. T. Nagatani, Phys. Rev. E 59(5), 4857 (1999) CrossRefGoogle Scholar
  16. P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. A 38(1), 364 (1988) CrossRefMathSciNetGoogle Scholar
  17. P. Bak, K. Sneppen, Phys. Rev. Lett. 71(24), 4083 (1993) CrossRefGoogle Scholar
  18. D. Helbing, M. Schönhof, D. Kern, New J. Phys. 4(33), 1 (2002) Google Scholar
  19. Proceedings of the Workshop on Human Behaviour and Traffic Networks, edited by N. Schrockenberg, R. Selten (Springer, Berlin Heidelberg, 2004), pp. 1–21 Google Scholar
  20. C. Gawron, Int. J. Mod. Phys. C 9(3), 393 (1998) CrossRefGoogle Scholar
  21. N. Cetin, A. Burri, K. Nagel, in Proceedings of Swiss Transport Research Conference (STRC), Monte Verita, CH, 2003. Earlier version, with inferior performance values: Transportation Research Board Annual Meeting 2003 paper number 03-4272 Google Scholar
  22. W.S. Vickrey, Amer. Econom. Rev. 59(2), 251 (1969) Google Scholar
  23. R. Arnott, A. De Palma, R. Lindsey, Am. Econom. Rev. 83(1), 161 (1993) Google Scholar
  24. D. Charypar, K. Nagel, Transportation 32(4), 369 (2005) CrossRefGoogle Scholar
  25. M. Balmer, B. Raney, K. Nagel, in Progress in activity-based analysis, edited by H.J.P. Timmermans (Elsevier, Oxford, UK, 2005), pp. 91–114 Google Scholar
  26. M. Ben-Akiva, S.R. Lerman, Discrete choice analysis (The MIT Press, Cambridge, MA, 1985) Google Scholar
  27. R Development Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2007. ISBN 3-900051-07-0 Google Scholar
  28. C.G. Langton, in Artificial Life II, Santa Fe Institute Studies in the Science of Complexity, Vol. 10, edited by C.G. Langton et al. (Addison-Wesley, Redwood Citz, CA, 1992), pp. 41–92 Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • M. Rieser
    • 1
    • 2
  • K. Nagel
    • 1
  1. 1.Transport Systems Planning and Transport Telematics (VSP), TU Berlin, Salzufer 17-19, Sekr. SG 12BerlinGermany
  2. 2.Institute for Transport Planning and Systems (IVT)ZurichSwitzerland

Personalised recommendations