The European Physical Journal B

, Volume 64, Issue 3–4, pp 543–550

Superfrustration of charge degrees of freedom



We review recent results, obtained with P. Fendley, on frustration of quantum charges in lattice models for itinerant fermions with strong repulsive interactions. A judicious tuning of kinetic and interaction terms leads to models possessing supersymmetry. In such models frustration takes the form of what we call superfrustration: an extensive degeneracy of supersymmetric ground states. We present a gallery of examples of superfrustration on a variety of 2D lattices.


05.30.-d Quantum statistical mechanics 11.30.Pb Supersymmetry 71.27.+a Strongly correlated electron systems; heavy fermions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.J.W. Verwey, Nature (London) 144, 327 (1939); P.W. Anderson, Phys. Rev. 102, 1008 (1956); G.H. Wannier, Phys. Rev. 79, 357 (1950)CrossRefADSGoogle Scholar
  2. 2.
    E. Runge, P. Fulde, Phys. Rev. B 70, 245113 (2004); O.I. Motrunich, P.A. Lee, Phys. Rev. B 69, 214516 (2004)CrossRefADSGoogle Scholar
  3. 3.
    P. Fendley, K. Schoutens, Phys. Rev. Lett. 95, 046403 (2005); e-print arXiv:hep-th/0504595CrossRefADSGoogle Scholar
  4. 4.
    P. Fendley, K. Schoutens, J. de Boer, Phys. Rev. Lett. 90, 120402 (2003); e-print arXiv:hep-th/0210161CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    P. Fendley, B. Nienhuis, K. Schoutens, J. Phys. A 36, 12399 (2003); e-print arXiv:cond-mat/0307338MATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    E. Witten, Nucl. Phys. B 202, 253 (1982)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    M. Beccaria, G. F. De Angelis, Phys. Rev. Lett. 94, 100401 (2005); e-print arXiv:cond-mat/0407752CrossRefADSGoogle Scholar
  8. 8.
    R. Bott, L.W. Tu, Differential Forms in Algebraic Topology, GTM 82 (Springer Verlag, New York, 1982)MATHGoogle Scholar
  9. 9.
    H.B. Thacker, Rev. Mod. Phys. 53, 253 (1981)CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    D. Friedan, S.H. Shenker, C. Itzykson, H. Saleur, J.B. Zuber, in Conformal invariance and applications to statistical mechanics (World Scientific, 1988)Google Scholar
  11. 11.
    G. Veneziano, J. Wosiek, JHEP 0611, 030 (2006); e-print arXiv:hep-th/0609210CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    H. van Eerten, J. Math. Phys. 46, 123302 (2005); e-print arXiv:cond-mat/0509581CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    J. Jonsson, Electronic Journal of Combinatorics 13, #R67 (2006); Certain Homology Cycles of the Independence Complex of Grid Graphs, Preprint (October 2005)Google Scholar
  14. 14.
    L. Huijse, J. Halverson, P. Fendley, K. Schoutens, Charge frustration and quantum criticality for strongly correlated fermions, Preprint (April 2008); e-print arXiv:0804.0174Google Scholar
  15. 15.
    P.W. Kasteleyn, J. Math. Phys. 4, 287 (1963); F.Y. Wu, Phys. Rev. 168, 539 (1967)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    P. Fendley, K. Schoutens, H. van Eerten, J. Phys. A 38, 315 (2005); e-print arXiv:cond-mat/0408497Google Scholar
  17. 17.
    M. Bousquet-Melou, S. Linusson, E. Nevo, On the independence complex of square grids, Preprint (2007); e-print arXiv:math/0701890Google Scholar
  18. 18.
    J. Jonsson, Hard Squares on Grids With Diagonal Boundary Conditions, Preprint (August 2006)Google Scholar
  19. 19.
    R.J. Baxter, Hard squares for z = −1, Preprint (2007); e-print arXiv:0709.4324v2Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of AmsterdamAmsterdamthe Netherlands

Personalised recommendations