The European Physical Journal B

, Volume 64, Issue 3–4, pp 341–347 | Cite as

Life at ultralow interfacial tension: wetting, waves and droplets in demixed colloid-polymer mixtures

  • H. N. W. Lekkerkerker
  • V. W. A. de Villeneuve
  • J. W. J. de Folter
  • M. Schmidt
  • Y. Hennequin
  • D. Bonn
  • J. O. Indekeu
  • D. G. A. L. Aarts
Article

Abstract

Mixtures of colloids and polymers display a rich phase behavior, involving colloidal gas (rich in polymer, poor in colloid), colloidal liquid (poor in polymer, rich in colloid) and colloidal crystal phases (poor in polymer, highly ordered colloids). Recently, the colloidal gas-colloidal liquid interface received considerable attention as well. Due to the colloidal length scale the interfacial tension is much lower than in the atomic or molecular analog (nN/m instead of mN/m). This ultra-low interfacial tension has pronounced effects on the kinetics of phase separation, the colloidal gas-liquid profile near a single wall and the thermally induced fluctuations of the interface. The amplitudes of these thermally excited capillary waves are restrained by the interfacial tension and are for that reason of the order of the particle diameter. Therefore, in molecular systems, the capillary waves can only be seen indirectly in scattering experiments. In colloidal systems, however, the wave amplitudes are on a (sub) micrometer scale. This fact enables the direct observation of capillary waves in both real space and real time using confocal scanning laser microscopy. Moreover, the real space technique enables us to demonstrate the strong influence of interface fluctuations on droplet coalescence and droplet break up.

PACS

67.30.hp 68.05.Cf Structure: measurements and simulations 68.37.-d Microscopy of surfaces, interfaces, and thin films 64.75.Xc Phase separation and segregation in colloidal systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Einstein, Ann. D. Physik 17, 549 (1905)CrossRefADSGoogle Scholar
  2. 2.
    J. Perrin, Ann. Chim. Phys. 18, 5 (1909)Google Scholar
  3. 3.
    M. Smoluchowski, Wien. Ber. 123, 2381 (1914); M. Smoluchowski, Wien. Ber. 124, 339 (1915)Google Scholar
  4. 4.
    T. Svedberg, Z. Phys. Chem. 77, 147 (1911)Google Scholar
  5. 5.
    S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943)MATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    N.G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981)MATHGoogle Scholar
  7. 7.
    M. Smoluchowski, Ann. D. Physik 25, 205 (1908)CrossRefADSGoogle Scholar
  8. 8.
    P. Debye, R.T. Jacobsen, J. Chem. Phys. 48, 203 (1968)CrossRefADSGoogle Scholar
  9. 9.
    D. Beysens, P. Guenon, F. Perrot, J. Phys.: Condens. Matter 2, SA127 (1991)CrossRefADSGoogle Scholar
  10. 10.
    L. Mandelstam, Ann. D. Physik 41, 609 (1914)Google Scholar
  11. 11.
    F.P. Buff, R.A. Lovett, F.H. Stillinger, Phys. Rev. Lett. 15, 621 (1965)CrossRefADSGoogle Scholar
  12. 12.
    D.G.A.L. Aarts, M. Schmidt, H.N.W. Lekkerkerker, Science 304, 847 (2004)CrossRefADSGoogle Scholar
  13. 13.
    J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity (Clarendon Press, Oxford, 1982)Google Scholar
  14. 14.
    L. Onsager, An. N.Y. Acad. Sci. 51, 627 (1949)CrossRefADSGoogle Scholar
  15. 15.
    K. Shundyak, R. Van Roij, J. Phys.: Condens. Matter 13, 4789 (2001)CrossRefADSGoogle Scholar
  16. 16.
    W. Chen, D.G. Gray, Langmuir 18, 633 (2002)CrossRefGoogle Scholar
  17. 17.
    D. van der Beek, H. Reich, P. van der Schoot, M. Dijkstra, T. Schilling, R. Vink, M. Schmidt, R. van Roij, H.N.W. Lekkerkerker, Phys. Rev. Lett. 97, 087801 (2006)CrossRefADSGoogle Scholar
  18. 18.
    S. Asakura, F. Oosawa, J. Chem. Phys. 22, 1255 (1954)ADSGoogle Scholar
  19. 19.
    A. Vrij, Pure Appl. Chem. 48, 471 (1976)CrossRefGoogle Scholar
  20. 20.
    H.N.W. Lekkerkerker, W.C. Poon, P.N. Pusey, A. Stroobants, P.B. Warren, Europhys. Lett. 20, 559 (1992)CrossRefADSGoogle Scholar
  21. 21.
    G.A. Vliegenthart, H.N.W. Lekkerkerker, Progr. Colloid Polym. Sci. 105, 27 (1997)CrossRefGoogle Scholar
  22. 22.
    E.H. de Hoog, H.N.W. Lekkerkerker, J. Phys. Chem. B 103, 5274 (1999)CrossRefGoogle Scholar
  23. 23.
    D.G.A.L. Aarts, J.H. van der Wiel, H.N.W. Lekkerkerker, J. Phys.: Condens. Matt. 15, s245 (2003)CrossRefADSGoogle Scholar
  24. 24.
    H.M. Princen, I.Y.Z. Zia, S.G. Mason, J. Colloid Interface Sci. 23, 99 (1967)CrossRefGoogle Scholar
  25. 25.
    M. Tolan, O.H. Seeck, J.P Schlomka, W. Press, J. Wang, S.K. Sinha, Z. Li, M.H. Rafailovich, J. Sokolov, Phys. Rev. Lett. 81, 2731 (1998)CrossRefADSGoogle Scholar
  26. 26.
    J. Meunier, J. Physique. Lett. 46, L 1005 (1985)CrossRefGoogle Scholar
  27. 27.
    K. Mecke, S. Dietrich, J. Chem. Phys. 123, 204723 (2005)CrossRefADSGoogle Scholar
  28. 28.
    J. Meunier, in Liquids at Interfaces, edited by J. Charvolin, J.F. Joanny, J. Zinn-Justin (North-Holland, New York, 1988), p. 327Google Scholar
  29. 29.
    U.S. Jeng, L. Esibov, L. Crow, A. Steyerl, J. Phys.: Condens. Matter 10, 4955 (1998)CrossRefADSGoogle Scholar
  30. 30.
    J. Thomson, H. Newall, Proc. R. Soc. London 39, 417 (1885)CrossRefGoogle Scholar
  31. 31.
    A.F. Jones, S.D.R. Wilson, J. Fluid Mech. 87, 263 (1978)MATHCrossRefADSGoogle Scholar
  32. 32.
    J. Eggers, J.R. Litster, H.A. Stone, J. Fluid Mech. 401, 293 (1999)MATHCrossRefADSMathSciNetGoogle Scholar
  33. 33.
    G.V. Jeffreys, J.L Hawksley, J. Appl. Chem. 12, 329 (1962)CrossRefGoogle Scholar
  34. 34.
    A.H. Brown, C. Hanson, Nature 214, 76 (1967)CrossRefADSGoogle Scholar
  35. 35.
    D.G.A.L. Aarts, H.N.W. Lekkerkerker, H. Guo, G. Wegdam, D. Bonn, Phys. Rev. Lett. 95, 164503 (2005)CrossRefADSGoogle Scholar
  36. 36.
    D.G.A.L. Aarts, H.N.W. Lekkerkerker, J. Fluid Mech., to be publishedGoogle Scholar
  37. 37.
    J. Eggers, Rev. Mat. Phys. 69, 865 (1997)CrossRefADSGoogle Scholar
  38. 38.
    J.W.S. Rayleigh, Proc. R. Soc. London 10, 4 (1879)Google Scholar
  39. 39.
    S. Tomotika, Proc. R. Soc. London A 150, 322 (1935)MATHADSCrossRefGoogle Scholar
  40. 40.
    M. Moseler, U. Landman, Science 289, 1165 (2000)CrossRefADSGoogle Scholar
  41. 41.
    L. D. Landau, E.M. Lifshitz, J. Exp. Theor. Phys. (USSR) 32, 618 (1957)Google Scholar
  42. 42.
    Y. Hennequin, D.G.A.L Aarts, J.H. van der Wiel, G. Wegdam, J. Eggers, H.N.W. Lekkerkerker, D. Bonn, Phys. Rev. Lett. 97, 244502 (2006)CrossRefADSGoogle Scholar
  43. 43.
    D.G.A.L Aarts, M. Schmidt, H.N.W. Lekkerkerker, K.R. Mecke, Adv. In Solid State Phys. 45, 15 (2005)CrossRefGoogle Scholar
  44. 44.
    Y. Hennequin, D.G.A.L Aarts, J.O. Indekeu, H.N.W. Lekkerkerker, D. Bonn, Phys. Rev. Lett., submitted for publicationGoogle Scholar
  45. 45.
    D.S. Fisher, D.A. Huse, Phys. Rev. B 32, 247 (1985)CrossRefADSGoogle Scholar
  46. 46.
    R. Lipowsky, M.E. Fisher, Phys. Rev. B 36, 2126 (1987)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • H. N. W. Lekkerkerker
    • 1
  • V. W. A. de Villeneuve
    • 1
  • J. W. J. de Folter
    • 1
  • M. Schmidt
    • 2
  • Y. Hennequin
    • 3
  • D. Bonn
    • 3
    • 4
  • J. O. Indekeu
    • 5
  • D. G. A. L. Aarts
    • 6
  1. 1.Van’t Hoff Laboratory for Physical and Colloid ChemistryUtrecht UniversityUtrechtThe Netherlands
  2. 2.H.H. Wills Physics LaboratoryUniversity of BristolBristolUK
  3. 3.Van der Waals-Zeeman InstituteUniversity of AmsterdamAmsterdamThe Netherlands
  4. 4.Laboratoire de Physique StatistiqueÉcole Normale SupérieureParis Cedex 05France
  5. 5.Instituut voor Theoretische FysicaKatholieke Universiteit LeuvenLeuvenBelgium
  6. 6.Physical and Theoretical Chemistry LaboratoryUniversity of OxfordOxfordUK

Personalised recommendations