Advertisement

The European Physical Journal B

, Volume 62, Issue 1, pp 65–70 | Cite as

Electron dynamics in modulation p-doped InGaAs/GaAs quantum dots

  • X. M. WenEmail author
  • L. V. Dao
  • P. Hannaford
  • S. Mokkapati
  • H. H. Tan
  • C. Jagadish
Mesoscopic and Nanoscale Systems

Abstract.

We investigate the electron dynamics of p-type modulation doped and undoped InGaAs/GaAs quantum dots using up-conversion photoluminescence at low temperature and room temperature. The rise time of the p-doped sample is significantly shorter than that of the undoped at low temperature. With increasing to room temperature the undoped sample exhibits a decreased rise time whilst that of the doped sample does not change. A relaxation mechanism of electron-hole scattering is proposed in which the doped quantum dots exhibit an enhanced and temperature independent relaxation due to excess built-in holes in the valence band of the quantum dots. In contrast, the rise time of the undoped quantum dots decreases significantly at room temperature due to the large availability of holes in the ground state of the valence band. Furthermore, modulation p-doping results in a shorter lifetime due to the presence of excess defects.

PACS.

78.47.Cd Time resolved luminescence 78.67.Hc Quantum dots 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Mukai, N. Ohtsuka, H. Shoji, M. Sugawara, Phys. Rev. B 54, R5243 (1996) Google Scholar
  2. J. Urayama, T.B. Norris, J. Singh, P. Bhattacharya, Phys. Rev. Lett. 86, 4930 (2001) CrossRefADSGoogle Scholar
  3. A.V. Uskov, J. McInerney, F. Adler, H. Schweizer, M.H. Pilkuhn, Appl. Phys. Lett. 72, 58 (1998) CrossRefADSGoogle Scholar
  4. U. Bockelmann, T. Egeler, Phys. Rev. B 46, 15574 (1992) CrossRefADSGoogle Scholar
  5. L. Zhang, T.F. Boggess, K. Gundogdu, M.E. Flatte, D.G. Deppe, C. Cao, O.B. Shchekin, Appl. Phys. Lett. 79, 3320 (2001) CrossRefADSGoogle Scholar
  6. K. Gundogdu, K.C. Hall, T.F. Boggess, D.G. Deppe, O.B. Shchekin, Appl. Phys. Lett. 85, 4570 (2004) CrossRefADSGoogle Scholar
  7. R.D. Schaller, J.M. Pietryga, S.V. Goupalov, M.A. Petruska, S.A. Ivanov, V.I. Klimov, Phys. Rev. Lett. 95, 196401 (2005) CrossRefADSGoogle Scholar
  8. R. Heitz, M. Veit, N.N. Ledentsov, A. Hoffmann, D. Bimberg, V.M. Ustinov, P.S. Kopev, Z.I. Alferov, Phys. Rev. B 56, 10435 (1997) CrossRefADSGoogle Scholar
  9. D.G. Deppe, H. Huang, O.B. Shchekin, IEEE J. Quant. Electro. 38, 1587 (2002) CrossRefADSGoogle Scholar
  10. O.B. Shchekin, D.G. Deppe, Appl. Phys. Lett. 80, 2758 (2002) CrossRefADSGoogle Scholar
  11. J. Siegert, S. Marcinkevicius, Q.X. Zhao, Phys. Rev. B 72, 085316 (2005) CrossRefADSGoogle Scholar
  12. X.Q. Li, H. Nakayama, Y. Arakawa, Phys. Rev. B 59, 5069 (1999) CrossRefADSGoogle Scholar
  13. L.V. Dao, M. Gal, C. Carmody, H.H. Tan, C. Jagadish, J. Appl. Phys. 88, 5252 (2000) CrossRefADSGoogle Scholar
  14. S. Raymond, X. Guo, J.L. Merz, S. Fafard, Phys. Rev. B 59, 7624 (1999) CrossRefADSGoogle Scholar
  15. T. Inoshita, H. Sakaki, Physica B 227, 373 (1996) CrossRefADSGoogle Scholar
  16. D.V. Regelman, E. Dekel, D. Gershoni, E. Ehrenfreund, A.J. Williamson, J. Shumway, A. Zunger, W.V. Schoenfeld, P.M. Petroff, Phys. Rev. B 64, 165301 (2001) CrossRefADSGoogle Scholar
  17. L. Landin, M.S. Miller, M.-E. Pistol, C.E. Pryor, L. Samuelson, Science 280, 262 (1998) CrossRefADSGoogle Scholar
  18. U. Bockelmann, G. Basterd, Phys. Rev. B 42, 8947 (1990) CrossRefADSGoogle Scholar
  19. T. Inoshita, H. Sakaki, Phys. Rev. B 46, 7260 (1992) CrossRefADSGoogle Scholar
  20. I.E. Itskevich, M.S. Skolnick, D.J. Mowbray, I.A. Trojan, S.G. Lyapin, L.R. Wilson, M.J. Steer, M. Hopkinson, L. Eaves, P.C. Main, Phys. Rev. 60, R2185 (1999) Google Scholar
  21. W.H. Chang, T.M. Hsu, N.T. Yeh, J.I. Chyi, Phys. Rev. 62, 13040 (2000) CrossRefGoogle Scholar
  22. A. Pinczuk, J.M. Worlock, R.E. Nahory, M.A. Pollack, Appl. Phys. Lett. 33, 461 (1978) CrossRefADSGoogle Scholar
  23. F. Adler, M. Geiger, A. Bauknecht, F. Scholz, H. Schweizer, M.H. Pilkuhn, B. Ohnesorge, A. Forchel, J. Appl. Phys. 80, 4019 (1996) CrossRefADSGoogle Scholar
  24. H.T. Jiang, J. Singh, Phys. Rev. B 56, 4696 (1997) CrossRefADSGoogle Scholar
  25. T.R. Nielsen, P. Gartner, M. Lorke, J. Seebeck, F. Jahnke, Phys. Rev. B 72 (2005) Google Scholar
  26. X.M. Wen, L.V. Dao, P. Hannaford, S. Mokkapati, H.H. Tan, C. Jagadish, J. Phys.: Condens. Matter 19, 386213 (2007) CrossRefADSGoogle Scholar
  27. I.C. Sandall, P.M. Smowton, C.L. Walker, T. Badcock, D.J. Mowbray, H.Y. Liu, M. Hopkinson, Appl. Phys. Lett. 88, 111113 (2006) CrossRefADSGoogle Scholar
  28. O.B. Shchekin, D.G. Deppe, D. Lu, Appl. Phys. Lett. 78, 3115 (2001) CrossRefADSGoogle Scholar
  29. C. Walther, J. Bollmann, H. Kissel, H. Kirmse, W. Neumann, W.T. Masselink, Physica B 274, 971 (1999) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • X. M. Wen
    • 1
    • 2
    Email author
  • L. V. Dao
    • 2
  • P. Hannaford
    • 2
  • S. Mokkapati
    • 3
  • H. H. Tan
    • 3
  • C. Jagadish
    • 3
  1. 1.Department of PhysicsYunnan UniversityYunnanP.R. China
  2. 2.Centre for Atom Optics and Ultrafast Spectroscopy, Faculty of Engineering and Industrial Sciences, Swinburne University of TechnologyHawthornAustralia
  3. 3.Department of Electronic Materials and EngineeringResearch School of Physical Sciences and Engineering, The Australian National UniversityCanberraAustralia

Personalised recommendations