The European Physical Journal B

, Volume 62, Issue 1, pp 1–6

Experimental investigation on zero-Øeff gaps of photonic crystals containing single-negative materials

  • Liwei Zhang
  • Yewen Zhang
  • Li He
  • Hongqing Li
  • Hong Chen
Solids and Liquids
  • 64 Downloads

Abstract.

Epsilon-negative (ENG) and mu-negative (MNG) materials are successfully realized by using composite right/left-handed transmission line (CRLH TL), based on which the photonic crystals were also constituted. The simulated and measured scattering parameters and phase shift indicate that the photonic crystals containing single-negative (SNG) materials can possess zero-effective phase (zero-Øeff) gaps, which are insensitive to the scaling change of the respective unit length. The width and depth of zero-Øeff gaps can be adjusted by varying the ratio of the length of ENG and MNG materials. The characteristics can be utilized to design a compact high quality factor (high-Q) filter, which is demonstrated by a defect mode in the photonic crystals in experiments.

PACS.

42.70.Qs Photonic bandgap materials 78.20.Ci Optical constants 41.20.Jb Electromagnetic wave propagation; radiowave propagation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987) CrossRefADSGoogle Scholar
  2. H.T. Jiang, H. Chen, H.Q. Li, Y.W. Zhang, Appl. Phys. Lett. 83, 5386 (2003) CrossRefADSGoogle Scholar
  3. J. Li, L. Zhou, C.T. Chan, P. Sheng, Phys. Rev. Lett. 90, 083901 (2003) CrossRefADSGoogle Scholar
  4. H.T. Jiang, H. Chen, H.Q. Li, Y.W. Zhang, J. Zi, S.Y. Zhu, Phys. Rev. E 69, 066607 (2004) CrossRefADSGoogle Scholar
  5. L.G. Wang, H. Chen, S.Y. Zhu, Phys. Rev. B 70, 245102 (2004) CrossRefADSGoogle Scholar
  6. H.T. Jiang, H. Chen, H.Q. Li, Y.W. Zhang, S.Y. Zhu, J. Appl. Phys. 98, 013101 (2005) CrossRefADSGoogle Scholar
  7. L. Gao, C.J. Tang, S.M. Wang, J. Magn. Magn. Mater. 301, 371 (2006) CrossRefADSGoogle Scholar
  8. L. W. Zhang, Y. W. Zhang , L. He, Z. G. Wang, H. Q. Li, and H. Chen, J. Phys. D: Appl. Phys. 40,2579 (2007) CrossRefADSGoogle Scholar
  9. G.G. Guan, H.T. Jiang, H.Q. Li, Y.W. Zhang, H. Chen, Appl. Phys. Lett. 88, 211112 (2006) CrossRefADSGoogle Scholar
  10. D.R. Fredkin, A. Ron, Appl. Phys. Lett. 81, 1753 (2002) CrossRefADSGoogle Scholar
  11. A. Al, N. Engheta, IEEE Trans. Antennas Propagat. 51, 2558 (2003) CrossRefADSGoogle Scholar
  12. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, J. Phys. Condens. Matter. 10, 4785 (1998) CrossRefADSGoogle Scholar
  13. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999) CrossRefGoogle Scholar
  14. T. Fujishige, C. Caloz, T. Itoh, Microwave Opt. Technol. Lett. 46, 476 (2005) CrossRefGoogle Scholar
  15. L.W. Zhang, Y.W. Zhang, L. He, H.Q. Li, H. Chen, Phys. Rev. E. 74, 056615 (2006) CrossRefADSGoogle Scholar
  16. N. Engheta, R.W. Ziolkowski, Metamaterials Physics, Engineering Explorations (Wiley, New York, 2006) Google Scholar
  17. G.V. Eleftheriades, A.K. Iyer, P.C. Kremer, IEEE Trans. Microwave Theory Tech. 50, 2702 (2002) CrossRefGoogle Scholar
  18. M.A. Antoniades, G.V. Eleftheriades, IEEE Antennas Wireless Propagat. Lett. 72, 103 (2003) CrossRefGoogle Scholar
  19. C. Caloz, T. Ioh, Electromagnetic Metamaterials, Transmission Line Theory, Microwave Applications (Wiley, IEEE Press, 2005) Google Scholar
  20. N.H. Liu, S.Y. Zhu, H. Chen, X. Wu, Phys. Rev. E 65, 046607 (2003) CrossRefADSGoogle Scholar
  21. R. Ruppin, Microwave Opt. Technol. Lett. 38, 494 (2003) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • Liwei Zhang
    • 1
  • Yewen Zhang
    • 1
    • 2
  • Li He
    • 1
  • Hongqing Li
    • 1
    • 2
  • Hong Chen
    • 1
    • 2
  1. 1.Pohl Institute of Solid State Physics, Tongji UniversityShanghaiP.R. China
  2. 2.School of Electronics and Information, Tongji UniversityShanghaiP.R. China

Personalised recommendations