Advertisement

The European Physical Journal B

, Volume 63, Issue 3, pp 373–380 | Cite as

Anomalous finite-size effects in the Battle of the Sexes

  • J. CremerEmail author
  • T. Reichenbach
  • E. Frey
Topical issue dedicated to ECCS2007 - Dresden

Abstract.

The Battle of the Sexes describes asymmetric conflicts in mating behavior of males and females. Males can be philanderer or faithful, while females are either fast or coy, leading to a cyclic dynamics. The adjusted replicator equation predicts stable coexistence of all four strategies. In this situation, we consider the effects of fluctuations stemming from a finite population size. We show that they unavoidably lead to extinction of two strategies in the population. However, the typical time until extinction occurs strongly prolongs with increasing system size. In the emerging time window, a quasi-stationary probability distribution forms that is anomalously flat in the vicinity of the coexistence state. This behavior originates in a vanishing linear deterministic drift near the fixed point. We provide numerical data as well as an analytical approach to the mean extinction time and the quasi-stationary probability distribution.

PACS.

87.23.-n Ecology and evolution 05.40.-a Nonlinear dynamics and chaos 02.50.Ey Stochastic processes 05.10.Gg Stochastic analysis methods (Fokker-Planck, Langevin, etc.) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Maynard Smith, Evolution and the Theory of Games (Cambridge University Press, Cambridge, 1982) Google Scholar
  2. J. Hofbauer, K. Sigmund, Evolutionary Games and Population Dynamics (Cambridge University Press, Cambridge, 2003) Google Scholar
  3. M.A. Nowak, Evolutionary Dynamics: Exploring the Equations of Life (Belknap Press, Cambridge, 2006) Google Scholar
  4. C. Taylor, D. Fudenberg, A. Sasaki, M.A. Nowak, Bull. Math. Biol. 66, 1621 (2004) CrossRefMathSciNetGoogle Scholar
  5. J.C. Claussen, A. Traulsen, Phys. Rev. E 71, 025101 (2005) CrossRefADSGoogle Scholar
  6. A. Traulsen, J.C. Claussen, C. Hauert, Phys. Rev. Lett. 95, 238701 (2005) CrossRefADSGoogle Scholar
  7. A. Traulsen, J.C. Claussen, C. Hauert, Phys. Rev. E 74, 011901 (2006) CrossRefADSMathSciNetGoogle Scholar
  8. T. Reichenbach, M. Mobilia, E. Frey, Phys. Rev. E 74, 051907 (2006) CrossRefADSMathSciNetGoogle Scholar
  9. J.M. Pacheco, A. Traulsen, M.A. Nowak, Phys. Rev. Lett. 97, 258103 (2006) CrossRefADSGoogle Scholar
  10. G. Szabó, G. Fath, Phys. Rep. 446, 97 (2007) CrossRefADSMathSciNetGoogle Scholar
  11. R. Dawkins, Selfish Gene (Oxford Univ. Press, Oxford, 1976) Google Scholar
  12. M.J. Osborne, An Introduction to Game Theory (Oxford University Press, Oxford, 2003) Google Scholar
  13. G.A. Parker, in Sexual Selection and Reproductive Competition in the Insects, edited by M.S. Blum, N.A. Blum (Academic Press, New York, 1979), pp. 123–166 Google Scholar
  14. P. Schuster, K. Sigmund, Anim. Behav. 29, 186 (1981) CrossRefGoogle Scholar
  15. T. Reichenbach, M. Mobilia, E. Frey, Nature 448, 1046 (2007) CrossRefADSGoogle Scholar
  16. P.A.P. Moran, Processes of Evolutionary Theory (Clarendon, Oxford, 1992) Google Scholar
  17. E. Liebermann, C. Hauert, M.A. Nowak, Nature 433, 312 (2005) CrossRefADSGoogle Scholar
  18. W. Feller, An Introduction to Probability Theory and its Application, 3rd edn. (Wiley, New York, 1968), Vol. 1 Google Scholar
  19. C.W. Gardiner, Handbook of Stochastic Methods (Springer, Berlin, 2005) Google Scholar
  20. N.V. Kampen, Stochastic Processes in Physics and Chemistry (North-Holland Personal Library, North-Holland, Amsterdam, 2001) Google Scholar
  21. J. Hofbauer, J. Math. Biol. 34, 675 (1996) CrossRefMathSciNetzbMATHGoogle Scholar
  22. T. Antal, I. Scheuring, B. Math. Biol. 68, 1923 (2006) CrossRefMathSciNetGoogle Scholar
  23. U.C. Täuber, Critical dynamics, lecture notes, 2006 http://www.phys.vt.edu/tauber/ Google Scholar
  24. H. Risken, The Fokker-Planck Equation - Methods of Solution and Applications (Springer-Verlag, Berlin, 1984) Google Scholar
  25. The Wolfram Functions Site, http://functions.wolfram.com Google Scholar
  26. J. Cremer, Diploma thesis, 2007 Google Scholar
  27. A. Hastings, Ecol. Lett. 4, 215 (2001) CrossRefGoogle Scholar
  28. A. Hastings, Trends Ecol. Evol. 19, 39 (2004) CrossRefGoogle Scholar
  29. M.A. Nowak, R.M. May, Nature 359, 826 (1992) CrossRefADSGoogle Scholar
  30. V. Colizza, R. Pastor-Satorras, A. Vespignani, Nat. Phys. 3, 276 (2007) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  1. 1.Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of PhysicsLudwig-Maximilians-Universität MünchenMünchenGermany

Personalised recommendations