The European Physical Journal B

, Volume 64, Issue 3–4, pp 567–572 | Cite as

Spiral model, jamming percolation and glass-jamming transitions

Article

Abstract

The Spiral Model (SM) corresponds to a new class of kinetically constrained models introduced in joint works with Fisher [9,10] which provide the first example of finite dimensional models with an ideal glass-jamming transition. This is due to an underlying jamming percolation transition which has unconventional features: it is discontinuous (i.e. the percolating cluster is compact at the transition) and the typical size of the clusters diverges faster than any power law, leading to a Vogel-Fulcher-like divergence of the relaxation time. Here we present a detailed physical analysis of SM, see [6] for rigorous proofs.

PACS

64.70.Pf Glass transitions 05.20.-y Classical statistical mechanics 05.50.+q Lattice theory and statistics 61.43.Fs Glasses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Ritort, P. Sollich, Adv. in Phys. 52, 219 (2003)CrossRefADSGoogle Scholar
  2. 2.
    G.H. Frederickson, H.C. Andersen, Phys. Rev. Lett. 53, 1244 (1984)CrossRefADSGoogle Scholar
  3. 3.
    W. Kob, H.C. Andersen, Phys. Rev. E 48, 4364 (1993)CrossRefADSGoogle Scholar
  4. 4.
    J. Jackle, S. Eisinger, Z. Phys. B 84, 115 (1991)CrossRefADSGoogle Scholar
  5. 5.
    J.P. Garrahan, D. Chandler, PNAS 100, 9710 (2003)CrossRefADSGoogle Scholar
  6. 6.
    C. Toninelli, G. Biroli, Spiral Model: a new cellular automaton with a discontinuous glass transition e-print arXiv:0709.0378Google Scholar
  7. 7.
    C. Toninelli, G. Biroli, J. Stat. Phys. 117, 27 (2004)MATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    N. Cancrini, F. Martinelli, C. Roberto, C. Toninelli, Kinetically constrained spin models, to appear in Probab. Th. and Rel. Fields, preprint math.PR/0610106Google Scholar
  9. 9.
    C. Toninelli, G. Biroli, D.S. Fisher, Phys. Rev. Lett. 96, 035702 (2006)CrossRefADSGoogle Scholar
  10. 10.
    C. Toninelli, G. Biroli, D.S. Fisher, Phys. Rev. Lett. 98, 129602 (2007)CrossRefADSGoogle Scholar
  11. 11.
    M. Jeng, J.M. Schwarz, On the study of jamming percolation, arXiv:0708.0582 (v1)Google Scholar
  12. 12.
    H. Hinrichsen, Adv. in Phys. 49, 815 (2000); R. Durrett, Ann. Prob. 12, 999CrossRefADSGoogle Scholar
  13. 13.
    R.H. Schonmann, Ann. of Probab. 20, 174 (1992)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    M. Jeng, J.M. Schwarz, Phys. Rev. Lett. 98, 129601 (2007)CrossRefADSGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  1. 1.Service de Physique ThéoriqueCEA/Saclay-Orme des MerisiersGif-sur-Yvette CedexFrance
  2. 2.Laboratoire de Probabilités et Modèles Aléatoires CNRS UMR 7599 Univ. Paris VI-VIIParis Cedex 05France

Personalised recommendations