Advertisement

The European Physical Journal B

, Volume 61, Issue 1, pp 33–45 | Cite as

The ground state and the thermodynamics of an extended BCS model of superconductivity

  • P. TarasewiczEmail author
Solids and Liquids

Abstract.

The thermodynamics of an extended BCS model of superconductivity is investigated. A physical system is described by a Hamiltonian containing the BCS interaction and an attractive four-fermion interaction. The four-fermion potential is caused by attractions between Cooper pairs mediated by the phonon field. The weakness of this potential allows the use of perturbation theory. The perturbation expansion was restricted to the first order because in the ground state the second order terms are not larger than 0.5 percent of first order correction for parameters used for calculations. The BCS Hamiltonian is an unperturbed one. The ground state and the thermal properties are examined. As a result the jump in the specific heat is higher than that in the BCS case. Moreover, the squared critical field is larger than the corresponding one in the BCS theory. Additionally, we show connections with the Bogolyubov's mean field approach used earlier in order to investigate general physical consequences of the model.

PACS.

74.20.-z Theories and models of superconducting state 74.20.Fg BCS theory and its development 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.N. Cooper, Phys. Rev. 104, 1189 (1956) zbMATHCrossRefADSGoogle Scholar
  2. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957) zbMATHCrossRefADSMathSciNetGoogle Scholar
  3. P. Tarasewicz, D. Baran, Phys. Rev. B 73, 094524 (2006) CrossRefADSGoogle Scholar
  4. T. Schneider, H. Keller, Int. J. Mod. Phys. B 8, 487 (1993) CrossRefADSGoogle Scholar
  5. Yu. M. Bunkov, A.S. Chen, D.J. Cousins, H. Godfrin, Phys. Rev. Lett. 85, 3456 (2000) CrossRefADSGoogle Scholar
  6. G.E. Volovik, Exotic Properties of Superfluid 3 He (World Scientific, Singapore 1992) Google Scholar
  7. C.W. Schneider, G. Hammerl, G. Logvenov, T. Kopp, J.R. Kirtley, P.J. Hirschfeld, J. Mannhart, Europhys. Lett. 68, 86, (2004) CrossRefADSGoogle Scholar
  8. A.A. Aligia, A.P. Kampf, J. Mannhart, Phys. Rev. Lett. 94, 247004 (2005) CrossRefADSGoogle Scholar
  9. G. Röpke, A. Schnell, P. Schuck, P. Nozières, Phys. Rev. Lett. 80, 3177 (1998) CrossRefADSGoogle Scholar
  10. J. Maćkowiak, P. Tarasewicz, Physica C 331, 25 (2000) CrossRefGoogle Scholar
  11. J. Brankov, J. Maćkowiak, V. Zagrebnov (unpublished) Google Scholar
  12. G. Rickayzen, Theory of Superconductivity (Interscience, New York, London, 1965) Google Scholar
  13. R.P. Feynman, Statistical Mechanics: a set of lectures (Benjamin, New York, London, 1972) Google Scholar
  14. N.N. Bogolyubov, D.N. Zubarev, Yu. A. Tserkovnikov, Doklady AN SSSR 117, 778 (1957); N.N. Bogolyubov, D.N. Zubarev, Yu. A. Tserkovnikov, Zh. Eksp. Teor. Fiz. 39, 120 (1960) Google Scholar
  15. N. N. Bogolyubov, D. N. Zubarev, Yu. A. Tserkovnikov, Zh. Eksp. Teor. Fiz. 39, 120 (1960) MathSciNetGoogle Scholar
  16. J. Czerwonko, Physica C 235, 2377 (1994) CrossRefADSGoogle Scholar
  17. J. Czerwonko, Mol. Phys. Rep. 12, 79 (1995) Google Scholar
  18. B. Mühlschlegel, Z. Phys. 155, 313 (1959) zbMATHCrossRefADSGoogle Scholar
  19. Ch. Poole, H. Farach, R. Creswick, Superconductivity (Academic Press, New York 1995) Google Scholar
  20. A.S. Alexandrov, Theory of Superconductivity: From Weak to Strong Coupling (Taylor and Francis, 2003) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Stellenbosch Private Bag X1StellenboschSouth Africa
  2. 2.Faculty of Pharmacy, Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in ToruńBydgoszczPoland

Personalised recommendations