Advertisement

The European Physical Journal B

, Volume 59, Issue 4, pp 509–518 | Cite as

Transition to chaos via the quasi-periodicity and characterization of attractors in confined Bénard-Marangoni convection

  • S. RahalEmail author
  • P. Cerisier
  • C. Abid
Physics of Fluids

Abstract.

A study of dynamic regimes in Bénard-Marangoni convection was carried out for various Prandtl and Marangoni numbers in small aspect ratio geometries (Γ = 2.2 and 2.8). Experiments in a small hexagonal vessel, for a large range of the Marangoni number (from 148 to 3636), were carried out. Fourier spectra and an auto-correlation function were used to recognize the various dynamic regimes. For given values of the Prandtl number (Pr = 440) and aspect ratio (Γ = 2.2), mono-periodic, bi-periodic and chaotic states were successively observed as the Marangoni number was increased. The correlation dimensions of strange attractors corresponding to the chaotic regimes were calculated. The dimensions were found to be larger than those obtained by other authors for Rayleigh-Bénard convection in aspect ratio geometries of the same order. The transition from temporal chaos to spatio-temporal chaos was also observed. For Γ = 2.2, when larger values of the Marangoni number were imposed (Ma = 1581 for Pr = 160 and Ma = 740 for Pr = 440), spatial modes were involved through the convective pattern dynamics.

PACS.

47.10.Fg Dynamic system methods 47.52.+j Chaos in fluid dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.C. Cross, P.E. Hohenberg, Rev. Mod. Phys. 65, 851 (1993) CrossRefADSGoogle Scholar
  2. E. Bodenschatz, W. Pesch, G. Ahlers, Ann. Rev. Fluid Mech. 32, 709 (2000) CrossRefADSMathSciNetGoogle Scholar
  3. M.F. Schatz, G.P. Neitzel, Ann. Rev. Fluid Mech. 33(6), 93 (2001) CrossRefMathSciNetGoogle Scholar
  4. E.A. Ramadan, J.M. Hay, R.E. Khayat, J. Non-Newtonian Fluid Mech. 115, 79 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  5. F.T. Akyildiz, H. Bellout, Applied Mathematics and Computation 162, 1103 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  6. M. Bestehorn, Phys. Rev. E 48, 3622 (1993) CrossRefADSMathSciNetGoogle Scholar
  7. F. Sain, H. Riecke, Physica D 144, 124 (2000) zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. W.V.R. Malkus, Proc. Roy. Soc. A 225, 196 (1954) zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. G.E. Willis, J.W. Deardorff, Phys. Fluids 10, 931 (1967) CrossRefGoogle Scholar
  10. R. Krishnamurti, J. Fluid Mech. 42, 309 (1970) CrossRefADSGoogle Scholar
  11. G. Ahlers G., Phys. Rev. Lett. 33, 1185 (1974) CrossRefADSGoogle Scholar
  12. J.P. Gollub, S.V. Benson, J. Fluid Mech. 100, 449 (1980) CrossRefADSGoogle Scholar
  13. J.P. Gollub, S.V. Benson, J. Steinman, in Nonlinear Dynamics, edited by R.H.G. Helleman (Annals of the New York Academy of Sciences, 1980), Vol. 357, p. 22 Google Scholar
  14. M. Giglio, S. Musazzi, U. Perini, Phys. Rev. Lett. 47, 243 (1981) CrossRefADSGoogle Scholar
  15. A. Libchaber, J. Maurer, J. Phys. Colloq. France 41, C3-51 (1980) Google Scholar
  16. A. Libchaber, C. Laroche, S. Fauve, J. Phys. Lett. 43, 211 (1982) CrossRefGoogle Scholar
  17. P. Bergé, M. Dubois, P. Manneville, Y. Pomeau, J. Phys. Lett. 41, L 341 (1980) Google Scholar
  18. M. Dubois, M.A. Rubio, P. Bergé, Phys. Rev. Lett. 51, 1446 (1983) CrossRefADSMathSciNetGoogle Scholar
  19. M. Sano, Y. Sawada, Chaos and Statistical Methods, edited by Y. Kuramoto (Springer-Verlag, Berlin, 1984) Google Scholar
  20. M. Dubois, P. Bergé, Physica Scripta 33, 159 (1986) CrossRefADSGoogle Scholar
  21. S. Sato, M. Sano, Y. Sawada, Phys. Rev. A 37, 1679 (1988) CrossRefADSGoogle Scholar
  22. T. Boeck, N.K. Vitanov, Phys. Rev. E 65, 3720 (2002) CrossRefMathSciNetGoogle Scholar
  23. P. Bergé, Y. Pomeau, C. Vidal, Order within Chaos (Wiley, New York, 1984) Google Scholar
  24. P. Bergé, Le Chaos: théorie et expériences (Eyrolles, 1988) Google Scholar
  25. P. Cerisier, C. Jamond, J. Pantaloni, J.C. Charmet, J. Phys. France 45, 405 (1984) CrossRefGoogle Scholar
  26. J.C. Berg, A. Acrivos, Chemical Engineering Science 20, 737(1965) CrossRefGoogle Scholar
  27. M.F. Schatz, S.J. VanHook, W.D. McCormick, J.B. Swift, H.L. Swinney, Phys. Fluids 11, 2577 (1999) CrossRefADSMathSciNetGoogle Scholar
  28. P. Cerisier, S. Rahal, B. Billia, Phys. Rev. E 54, 3508 (1996) CrossRefADSGoogle Scholar
  29. O. Ozen, E. Theisen, D.T. Johnson, P.C. Dauby, R. Narayanan, Journal of Colloid and Interface Science 289, 271 (2005) CrossRefGoogle Scholar
  30. M. Dubois, P. Bergé, Phys. Lett. 93, 365 (1983) CrossRefGoogle Scholar
  31. F. Takens, in Dynamical Systems and Turbulence, edited by D.A. Rand, L.S. Young (Springer-Verlag, Berlin, 1981) Google Scholar
  32. F. Takens, in Dynamical Systems and Bifurcations, edited by H.W. Broer, F. Takens (Springer-Verlag, New York, 1985) Google Scholar
  33. N.H. Packard, J.P. Crutchfield, J.D. Farmer, R.S. Shaw, Phys. Rev. Lett. 45, 712 (1980) CrossRefADSGoogle Scholar
  34. P. Grassberger, I. Procaccia, Phys. Rev. Lett. 50, 346 (1983) CrossRefADSMathSciNetGoogle Scholar
  35. P. Grassberger, I. Procaccia, Physica D 9, 189 (1983) zbMATHCrossRefADSMathSciNetGoogle Scholar
  36. C. Lausberg, Ph.D. thesis, INPG, Grenoble, France, 1987 Google Scholar
  37. H. Abarbanel, R. Brown, J.J. Sidorowich, L.S. Tsimiring, Rev. Mod. Phys. 65, 1331 (1993) CrossRefADSMathSciNetGoogle Scholar
  38. J.C. Sprott, Chaos and Time-Series Analysis (Oxford University Press, 2003) Google Scholar
  39. P. Cvitanovic, G. Gunaratne, I. Procaccia, Phys. Rev. A 38, 1503 (1988) CrossRefADSMathSciNetGoogle Scholar
  40. S. Chang, J. McCown, Phys. Rev. A 30, 1149 (1984) CrossRefADSMathSciNetGoogle Scholar
  41. A. Thess, S.A. Orszag, J. Fluid Mech. 283, 201 (1995) zbMATHCrossRefADSMathSciNetGoogle Scholar
  42. P. Cerisier, R. Occelli, J. Pantaloni, Physico-Chemical Hydrodynamics 7(4), 191 (1986) Google Scholar
  43. C. Perez-Garcia, J. Pantaloni, R. Occelli, P. Cerisier, J. Phys. France 46, 2047 (1985) CrossRefGoogle Scholar
  44. A. Libchaber, J. Maurer, J. Phys. Lett. France 39, L 369 (1978) Google Scholar
  45. B. Malraison, P. Atten, P. Bergé, M. Dubois, C.R. Acad. Sc. Paris 297, 209 (1983) ADSGoogle Scholar
  46. J.P. Eckmann, S. Oliffson - Kamphorst, D. Ruelle, S. Ciliberto, Phys. Rev. A 34, 4971 (1986) CrossRefADSMathSciNetGoogle Scholar
  47. F.E. Udwadia, H.F. Von Bremen, Appl. Math. Comput. 121, 219 (2001) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of BatnaBatnaAlgeria
  2. 2.IUSTI - CNRS UMR 6595, Polytech'MarseilleMarseilleFrance

Personalised recommendations