Advertisement

The European Physical Journal B

, Volume 59, Issue 4, pp 451–456 | Cite as

Quantum simulations of spin-relaxation and transport in copper

  • K. P. McKennaEmail author
  • G. J. Morgan
Topical Issue on New Trends in Spin Transfer Physics

Abstract.

A quantum equation of motion method is applied to simulate conduction electron spin-relaxation and transport in the presence of the spin-orbit interaction and disorder. A spin-relaxation time of 25ps is calculated for Cu with a realistic low temperature resistivity of 3.2 μΩ cm – corresponding to a spin-diffusion length of about 0.4 μm. Spin-relaxation in a finite nanocrystallite of Cu is also simulated and a short spin-relaxation time (0.47 ps) is calculated for a crystallite with 7% surface atoms. The spin-relaxation calculated for bulk Cu is in good agreement with experimental evidence, and the dramatic nanocrystallite effect observed has important implications for nano-spintronic devices.

PACS.

72.25.Ba Spin polarized transport in metals 73.63.-b Electronic transport in nanoscale materials and structures 72.25.Hg Electrical injection of spin polarized carriers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.Y. Tsymbal, D.G. Pettifor, Solid State Physics (Academic Press, San Diego, 2001), Vol. 56, pp. 113–237 Google Scholar
  2. S.S.P. Parkin et al., J. Appl. Phys. 85, 5828 (1999) CrossRefADSGoogle Scholar
  3. J.F. Gregg, I. Petej, E. Jouguelet, C. Dennis, J. Phys. D: Appl. Phys. 35, R121 (2002) Google Scholar
  4. F.J. Albert et al., Phys. Rev. Lett. 89, 226802 (2002) CrossRefADSGoogle Scholar
  5. J. Fabian, S.D. Sarma, J. Vac. Sci. Technol. 17, 1708 (1999) CrossRefGoogle Scholar
  6. K.P. McKenna, L.A. Michez, G.J. Morgan, B.J. Hickey, Phys. Rev. B 72, 054418 (2005) CrossRefADSGoogle Scholar
  7. L.I. Schiff, Quantum Mechanics (McGraw-Hill, 1968) Google Scholar
  8. R.J. Elliott, Phys. Rev. 96, 266 (1954) zbMATHCrossRefADSGoogle Scholar
  9. Y. Yafet, Solid State Physics 14, 1 (1963) CrossRefGoogle Scholar
  10. J. Fabian, S.D. Sarma, Phys. Rev. Lett. 81, 5624 (1998) CrossRefADSGoogle Scholar
  11. F. Beuneu, P. Monod, Phys. Rev. B 13, 3424 (1976) CrossRefADSGoogle Scholar
  12. A.Y. Elezzabi, M.R. Freeman, M. Johnson, Phys. Rev. Lett. 77, 3220 (1996) CrossRefADSGoogle Scholar
  13. F.J. Jedema, A.T. Filip, B.J. van Wees, Nature 410, 345 (2001) CrossRefADSGoogle Scholar
  14. T. Valet, A. Fert, Phys. Rev. B 48, 7099 (1993) CrossRefADSGoogle Scholar
  15. D.A. Papaconstantopolous, Handbook of the bandstructure of elemental solids (Plenum Press, 1986) Google Scholar
  16. P. Butcher, J. Phys. C 5, 3164 (1972) CrossRefADSGoogle Scholar
  17. F. Herman, S. Skillman, Atomic structure calculations (Prentice-Hall, 1963) Google Scholar
  18. J. Friedel, J. Phys. Chem. Solids 25, 781 (1964) CrossRefADSGoogle Scholar
  19. B. Kramer, A. MacKinnon, D. Weaire, Phys. Rev. B 23, 6357 (1981) CrossRefADSGoogle Scholar
  20. B.J. Hickey, J.N. Burr, G.J. Morgan, Phil. Mag. Lett. 61, 161 (1990) CrossRefADSGoogle Scholar
  21. P.W. Anderson, Phys. Rev. 109, 1492 (1958) CrossRefADSGoogle Scholar
  22. E.Y. Tsymbal, D.G. Pettifor, Phys. Rev. B 54, 15314 (1996) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity College LondonLondonUK
  2. 2.London Centre for Nanotechnology, 17-19 Gordon StreetLondonUK
  3. 3.School of Physics and Astronomy, E.C. Stoner Laboratory, University of LeedsLeeds.UK

Personalised recommendations