The European Physical Journal B

, Volume 59, Issue 2, pp 249–257 | Cite as

Frequency and phase synchronization of two coupled neurons with channel noise

  • L. C. Yu
  • Y. ChenEmail author
  • Pan Zhang
Interdisciplinary Physics


We study the frequency and phase synchronization in two coupled identical and nonidentical neurons with channel noise. The occupation number method is used to model the neurons in the context of stochastic Hodgkin-Huxley model in which the strength of channel noise is represented by ion channel cluster size of neurons. It is shown that channel noise allows the two neurons to achieve both frequency and phase synchronization in the regime where the deterministic Hodgkin-Huxley neuron is unable to be excited. In particular, the identical channel noises lead to frequency synchronization in weak-coupling regime. However, if the coupling is strong, the two neurons could be frequency locked even though the channel noises are not identical. We also show that the relative phase of neurons displays profuse dynamical regimes under the combined action of coupling and channel noise. Those regimes are characterized by the distribution of the cyclic relative phase corresponding to antiphase locking, random switching between two or more states. Both qualitative and quantitative descriptions are applied to describe the transitions to perfect phase locking from no synchronization states.


05.45.Xt Synchronization; coupled oscillators 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion 87.16.-b Subcellular structure and processes  


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A. Pikovsky, M. Rosenblum, J. Kurths Synchronization, a Universal Concept in Nonlinear Science (UK, Cambridge, 2001) Google Scholar
  2. C.M. Gray, P. Koning, A.K. Engel, W. Singer, Nature 338, 334 (1989) CrossRefADSGoogle Scholar
  3. R.C. Elson, A.I. Stlverston, R. Huerta, Phys. Rev. Lett. 81, 5692 (1998) CrossRefADSGoogle Scholar
  4. R.D. Pinto, P. Varona, A.R. Volkovskii, Phys. Rev. E 62, 2644 (2000) CrossRefADSGoogle Scholar
  5. Q. Li, Y. Chen, Y.H. Wang, Phys. Rev. E 65, 041916 (2002) CrossRefADSGoogle Scholar
  6. R. Fitzgerald, Physics Today, March edition, 17 (1999) Google Scholar
  7. G. Uchida, M. Fukuda, M. Tanifuji, Phys. Rev. E 73, 031910 (2006) CrossRefADSGoogle Scholar
  8. A.S. Pikovsky, Phys. Lett. A 165, 33 (1992) CrossRefADSMathSciNetGoogle Scholar
  9. A. Maritan, J.R. Banavar, Phys. Rev. Lett. 72, 1451 (1994) CrossRefADSGoogle Scholar
  10. A.S. Pikovsky, Phys. Rev. Lett. 73, 2931 (1994) CrossRefADSGoogle Scholar
  11. C.S. Zhou, C.H. Lai, Phys. Rev. E 58, 5188 (1998) CrossRefADSGoogle Scholar
  12. H. Herzel, J. Freund, Phys. Rev. E 52, 3238 (1995) CrossRefADSGoogle Scholar
  13. Y.Q. Wang, D.T. Chik, Z.D. Wang, Phys. Rev. E 61, 740 (2000) CrossRefADSGoogle Scholar
  14. I.Z. Kiss, Y. Zhai, J.L. Hudson, Chaos 13, 267 (2003) CrossRefADSMathSciNetGoogle Scholar
  15. C.S. Zhou, J. Kurths, Chaos 13, 401 (2003) CrossRefADSGoogle Scholar
  16. B. Hille, Ionic channels of excitable membranes (Sunderland, MA, Sinauer Associates, 2001) Google Scholar
  17. J.A. White, J.T. Rubinstein, A.R. Kay, Trends. Neurosci. 23, 131 (2000) CrossRefGoogle Scholar
  18. E. Schneidman, B. Freedman, I. Segev, Neural Comput. 10, 1679 (1998) CrossRefGoogle Scholar
  19. C.C. Chow, J.A. White, Biophys. J. 71, 3013 (1996) CrossRefADSGoogle Scholar
  20. J.M. Casado, Phys. Lett. A 310, 400 (2003) zbMATHCrossRefADSMathSciNetGoogle Scholar
  21. J.M. Casado, J.P. Baltanas, Phys. Rev. E 68, 061917 (2003) CrossRefADSMathSciNetGoogle Scholar
  22. S.Y. Zeng, P. Jung, Phys. Rev. E 70, 011903 (2004) CrossRefADSGoogle Scholar
  23. G. Schmid, I. Goychuk, P. Hänggi, Phys. Biol. 1, 61 (2004) CrossRefADSGoogle Scholar
  24. A.L. Hodgkin, A.F. Huxley, J. Physiol. 117, 500 (1952) Google Scholar
  25. B. Hauschildt, N.B. Janson, A. Balanov, Phys. Rev. E 74, 051906 (2006) CrossRefADSMathSciNetGoogle Scholar
  26. P. Dayan, L.F. Abbott, Theoretical neuroscience: computational and mathematical modeling of neural systems (MIT press, USA, 2001) Google Scholar
  27. J.A. Freund, L. Schimansky-Geier, P. Hänggi, Chaos 13, 225 (2003) zbMATHCrossRefADSMathSciNetGoogle Scholar
  28. S.H. Park, S.W. Kim, H.B. Pyo, S. Lee, Phys. Rev. E 60, 2177 (1999) CrossRefADSGoogle Scholar
  29. S.K. Han, C. Kurrer, Y. Kuramoto, Phys. Rev. Lett. 75, 3190 (1995) CrossRefADSGoogle Scholar
  30. S.H. Park, S.K. Han, S.W. Kim, ETRI J. 18, 161 (1996) Google Scholar
  31. A. Sherman, J. Rinzel, Proc. Natl. Acad. Sci. (USA) 89, 2471 (1992) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute of Theoretical Physics, Lanzhou UniversityLanzhouP.R. China

Personalised recommendations