Advertisement

The European Physical Journal B

, Volume 58, Issue 2, pp 185–191 | Cite as

Developmental time windows for spatial growth generate multiple-cluster small-world networks

  • F. Nisbach
  • M. KaiserEmail author
Interdisciplinary Physics

Abstract.

Many networks extent in space, may it be metric (e.g. geographic) or non-metric (ordinal). Spatial network growth, which depends on the distance between nodes, can generate a wide range of topologies from small-world to linear scale-free networks. However, networks often lacked multiple clusters or communities. Multiple clusters can be generated, however, if there are time windows during development. Time windows ensure that regions of the network develop connections at different points in time. This novel approach could generate small-world but not scale-free networks. The resulting topology depended critically on the overlap of time windows as well as on the position of pioneer nodes.

PACS.

89.75.Fb Structures and organization in complex systems 89.75.Hc Networks and genealogical trees 87.18.Sn Neural networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998) CrossRefADSGoogle Scholar
  2. M. Kaiser, C.C. Hilgetag, Phys. Rev. E 69, 036103 (2004) CrossRefADSGoogle Scholar
  3. M. Sur, C.A. Leamey, Nature Rev. Neurosci. 2, 251 (2001) CrossRefGoogle Scholar
  4. P. Rakic, Nature Rev. Neurosci. 3, 65 (2002) CrossRefGoogle Scholar
  5. M. Kaiser, C.C. Hilgetag, Neurocomputing 70, 1829 (2007) CrossRefGoogle Scholar
  6. M. Kaiser, C.C. Hilgetag, Biol. Cybern. 90, 311 (2004) zbMATHCrossRefGoogle Scholar
  7. B.A. Huberman, L.A. Adamic, Nature 401, 131 (1999) ADSGoogle Scholar
  8. S.H. Yook, H. Jeong, A.L.Barabási, Proc. Natl. Acad. Sci. 99, 13382 (2002) CrossRefADSGoogle Scholar
  9. M.S. Granovetter, Am. J. Sociol. 78, 1360 (1973) CrossRefGoogle Scholar
  10. M. Girvan, M.E.J. Newman, Proc. Natl. Acad. Sci. 99, 7821 (2002) zbMATHCrossRefADSGoogle Scholar
  11. B.M. Waxman, IEEE J. Sel. Areas Commun. 6, 1617 (1988) CrossRefGoogle Scholar
  12. J. Kleinberg, Proc. 32nd ACM Symposium on Theory of Computing 163 (2000) Google Scholar
  13. A.L. Barabási, R. Albert, Science 286, 509 (1999) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.University of Karlsruhe, Institut für Algebra und GeometrieKarlsruheGermany
  2. 2.School of Computing Science, Newcastle UniversityNewcastle upon TyneUK

Personalised recommendations