The European Physical Journal B

, Volume 57, Issue 3, pp 257–263

Response of La0.8Sr0.2CoO3-δ to perturbations on the CoO3 sublattice

  • Z. Németh
  • Z. Homonnay
  • F. Árva
  • Z. Klencsár
  • E. Kuzmann
  • A. Vértes
  • J. Hakl
  • S. Mészáros
  • K. Vad
  • P. F. de Châtel
  • G. Gritzner
  • Y. Aoki
  • H. Konno
  • J. M. Greneche
Solids and Liquids
  • 53 Downloads

Abstract.

Emission and transmission Mössbauer studies of La0.8Sr0.2CoO3-δ perovskites doped with ∼0.02 stoichiometric units of oxygen vacancy or 2.5% iron corroborate the occurrence of electronic phase separation in these systems. The effect of the small perturbation of the CoO3 sublattice with either iron ions or oxygen vacancies on the bulk magnetization as well as on the Mössbauer spectra is in good agreement with the double exchange based cluster model. The magnetoresistance does not show any peak near the Curie temperature, but reaches -84% in a field of 7.5 T at T = 8 K. Below TC ≈ 180 K the Mössbauer spectra distinctly include the contribution from paramagnetic and ferromagnetic regions, providing direct evidence for phase separation. No contribution to the spectra from Fe4+ ions can be observed, which is an unambiguous evidence that at low concentration iron (either directly doped or formed from 57Co by nuclear decay) is accommodated in the cobaltate lattice as Fe3+ ion.

PACS.

75.47.Gk Colossal magnetoresistance 75.30.Kz Magnetic phase boundaries 75.10.Nr Spin-glass and other random models 71.30.+h Metal-insulator transitions and other electronic transitions 76.80.+y Mossbauer effect; other gamma-ray spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Golovanov, L. Mihály, A.R. Moodenbaugh, Phys. Rev. B 53, 8207 (1996) CrossRefADSGoogle Scholar
  2. R. Mahendiran, A.K. Raychaudhuri, Phys. Rev. B 54, 16044 (1996) CrossRefADSGoogle Scholar
  3. S. Yamaguchi, H. Taniguchi, H. Takagi, T. Arima, Y. Tokura, J. Phys. Soc. Jpn 64, 1885 (1995) CrossRefADSGoogle Scholar
  4. J. Wu, C. Leighton, Phys. Rev. B 67, 174408 (2003) CrossRefADSGoogle Scholar
  5. A.V. Samoilov, G. Beach, C.C. Fu, N.-C. Yeh, R.P. Vasquez, J. Appl. Phys. 83, 6998 (1998) CrossRefADSGoogle Scholar
  6. K. Muta, Y. Kobayashi, K. Asai, J. Phys. Soc. Jap. 71, 2784 (2002) CrossRefADSGoogle Scholar
  7. A. Mineshige, M. Inaba, T. Yao, Z. Ogumi, K. Kikuchi, M. Kawase, J. Solid State Chem. 121, 423 (1996) CrossRefGoogle Scholar
  8. A.N. Petrov, O.F. Kononchuk, A.V. Andreev, V.A. Cherepanov, P. Kofstad, Solid State Ionics 80, 189 (1995) CrossRefGoogle Scholar
  9. K. Asai, O. Yokokura, N. Nishimori, H. Chou, J.M. Tranquada, G. Shirane, S. Higuchi, Y. Okajima, K. Kohn, Phys. Rev. B 50, 3025 (1994) CrossRefADSGoogle Scholar
  10. D. Phelan, D. Louca, S. Rosenkranz, S.-H. Lee, Y. Qiu, P.J. Chupas, R. Osborn, H. Zheng, J.F. Mitchell, J.R.D. Copley, J.L. Sarrao, Y. Moritomo, Phys. Rev. Lett. 96, 027201 (2006) CrossRefADSGoogle Scholar
  11. M.A. Señaris-Rodriguez, J.B. Goodenough, J. Solid State Chem. 118, 323 (1995) CrossRefGoogle Scholar
  12. Y. Tang, Y. Sun, Z. Cheng, Phys. Rev. B 73, 012409 (2006) CrossRefADSGoogle Scholar
  13. J. Wu, J.W. Lynn, C.J. Glinka, J. Burley, H. Zheng, J.F. Mitchell, C. Leighton, Phys. Rev. Lett. 94, 037201 (2005) CrossRefADSGoogle Scholar
  14. P.L. Kuhns, M.J.R. Hoch, W.G. Moulton, A.P. Reyes, J. Wu, C. Leighton, Phys. Rev. Lett. 91, 127202 (2003) CrossRefADSGoogle Scholar
  15. M.J.R. Hoch, P.L. Kuhns, W.G. Moulton, A.P. Reyes, J. Wu, C. Leighton, Phys. Rev. B 69, 014425 (2004) CrossRefADSGoogle Scholar
  16. A. Barman, M. Ghosh, S. Biswas, S.K. De, S. Chatterjee, Appl. Phys. Lett. 71, 3150 (1997) CrossRefADSGoogle Scholar
  17. Á. Cziráki, I. Gerõcs, M. Köteles, A. Gábris, L. Pogány, I. Bakonyi, Z. Klencsár, A. Vértes, S.K. De, A. Barman, M. Ghosh, S. Biswas, S. Chatterjee, B. Arnold, H.D. Bauer, K. Wetzig, C. Ulhaq-Bouillet, V. Pierron-Bohnes, Eur. Phys. J. B 21, 521 (2001) CrossRefADSGoogle Scholar
  18. Y. Sun, Xiaojun Xu, Y. Zhang, Phys. Rev. B 62, 5289 (2000) CrossRefADSGoogle Scholar
  19. Z. Németh, Z. Klencsár, E. Kuzmann, Z. Homonnay, A. Vértes, J.M. Greneche, B. Lackner, K. Kellner, G. Gritzner, J. Hakl, K. Vad, S. Mészáros, L. Kerekes, Eur. Phys. J. B 43, 297 (2005) CrossRefADSGoogle Scholar
  20. M. Itok, I. Natori, S. Kubota, K. Motoya, J. Phys. Soc. Jpn 63, 1486 (1994) CrossRefADSGoogle Scholar
  21. Z. Németh, Z. Homonnay, F. Árva, Z. Klencsár, E. Kuzmann, J. Hakl, K. Vad, S. Mészáros, G. Gritzner, A. Vértes, J. Radioanal. Nucl. Chem. 271, 11 (2007) CrossRefGoogle Scholar
  22. Z. Klencsár, E. Kuzmann, A. Vértes, J. Radioanal. Nucl. Chem. 210, 105 (1996) CrossRefGoogle Scholar
  23. Z. Homonnay, Z. Klencsár, E. Kuzmann, Z. Németh, P. Rajczy, K. Kellner, G. Gritzner, A. Vértes, Sol. State Phen. 90–91, 165 (2003) Google Scholar
  24. U. Shimony, J.M. Knudsen, Phys. Rev. 144 361 (1966) Google Scholar
  25. M. Kopcewicz, D.V. Karpinsky, I.O. Troyanchuk, J. Phys. Cond. Mat. 17 7743 (2005) Google Scholar
  26. H.M. Aarbogh, J. Wu, L. Wang, H. Zheng, J.F. Mitchell, C. Leigthon, Phys. Rev. B 74, 134408 (2006) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • Z. Németh
    • 1
  • Z. Homonnay
    • 1
  • F. Árva
    • 1
  • Z. Klencsár
    • 2
  • E. Kuzmann
    • 3
  • A. Vértes
    • 1
  • J. Hakl
    • 4
  • S. Mészáros
    • 4
  • K. Vad
    • 4
  • P. F. de Châtel
    • 4
  • G. Gritzner
    • 5
  • Y. Aoki
    • 6
  • H. Konno
    • 6
  • J. M. Greneche
    • 7
  1. 1.Department of Nuclear ChemistryEötvös Loránd UniversityBudapestHungary
  2. 2.Department of Mathematics and PhysicsUniversity of KaposvárKaposvárHungary
  3. 3.Research Group of Chemical Research Center Hungarian Academy of Sciences at ELTEBudapestHungary
  4. 4.Institute of Nuclear Research of the Hungarian Academy of SciencesDebrecenHungary
  5. 5.Institut für Chemische Technologie Anorganischer Stoffe, Johannes Kepler UniversitätLinzAustria
  6. 6.Division of Materials ChemistryGraduate School of Engineering, Hokkaido UniversitySapporoJapan
  7. 7.Laboratoire de Physique de l'État Condensé, UMR CNRS 6087 Université du MaineLe Mans Cedex 9France

Personalised recommendations