The European Physical Journal B

, Volume 56, Issue 4, pp 373–380 | Cite as

Evolution of canalizing Boolean networks

  • A. SzejkaEmail author
  • B. Drossel
Interdisciplinary Physics


Boolean networks with canalizing functions are used to model gene regulatory networks. In order to learn how such networks may behave under evolutionary forces, we simulate the evolution of a single Boolean network by means of an adaptive walk, which allows us to explore the fitness landscape. Mutations change the connections and the functions of the nodes. Our fitness criterion is the robustness of the dynamical attractors against small perturbations. We find that with this fitness criterion the global maximum is always reached and that there is a huge neutral space of 100% fitness. Furthermore, in spite of having such a high degree of robustness, the evolved networks still share many features with “chaotic” networks.


87.23.Kg Dynamics of evolution 89.75.Hc Networks and genealogical trees 87.15.Aa Theory and modeling; computer simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. S. Kauffman, J. Theor. Biol. 22, 437 (1969) CrossRefMathSciNetGoogle Scholar
  2. S. Kauffman, Nature 224, 177 (1969) CrossRefADSGoogle Scholar
  3. S.A. Kauffman, The Origin of Order (Oxford University Press, 1993) Google Scholar
  4. S. Bornholdt, Science 310, 449 (2005) CrossRefGoogle Scholar
  5. R. Albert, H.G. Othmer, J. Theor. Biol. 223, 1 (2003), e-print arXiv:q-bio.MN/0311019 CrossRefMathSciNetGoogle Scholar
  6. F. Li, T. Long, Y. Lu, Q. Ouyang, C. Tang, Proc. Natl. Acad. Sci. USA 101, 4781 (2004), e-print arXiv:q-bio.MN/0310010 CrossRefADSGoogle Scholar
  7. S.E. Harris, B.K. Sawhill, A. Wuensche, S. Kauffman, Complexity 7, 23 (2002) CrossRefGoogle Scholar
  8. S.A. Kauffman, R.G. Smith, Physica D 22, 68 (1986) CrossRefMathSciNetGoogle Scholar
  9. S. Bornholdt, K. Sneppen, Phys. Rev. Lett. 81, 236 (1998), e-print arXiv:physics/9708026 CrossRefADSGoogle Scholar
  10. S. Bornholdt, K. Sneppen, Proc. R. Soc. Lond. B 267, 2281 (2000), e-print arXiv:cond-mat/0003333 CrossRefGoogle Scholar
  11. M.D. Stern, Proc. Natl. Acad. Sci. USA 96, 10746 (1999) CrossRefADSGoogle Scholar
  12. M. Paczuski, K.E. Bassler, A. Corral, Phys. Rev. Lett. 84, 3185 (2000), e-print arXiv:cond-mat/9905082 CrossRefADSGoogle Scholar
  13. K.E. Bassler, C. Lee, Y. Lee, Phys. Rev. Lett. 93, 038101 (2004) CrossRefADSGoogle Scholar
  14. B. Luque, F.J. Ballesteros, E.M. Muro, Phys. Rev. E 63, 051913 (2001), e-print arXiv:cond-mat/0102396 CrossRefADSGoogle Scholar
  15. S. Bornholdt, T. Rohlf, Phys. Rev. Lett. 84, 6114 (2000), e-print arXiv:cond-mat/0003215 CrossRefADSGoogle Scholar
  16. M. Liu, K.E. Bassler, Phys. Rev. E 74, 041910 (2006), e-print arXiv:cond-mat/0605020 CrossRefADSGoogle Scholar
  17. A.A. Moreira, L.A.N. Amaral, Phys. Rev. Lett. 94, 218702 (2005), e-print arXiv:cond-mat/0504722 CrossRefADSGoogle Scholar
  18. S. Kauffman, C. Peterson, B. Samuelsson, C. Troein, Proc. Natl. Acad. Sci. USA 100, 14796 (2003), e-print arXiv:q-bio.MN/0401002 CrossRefADSGoogle Scholar
  19. S. Kauffman, C. Peterson, B. Samuelsson, C. Troein, Proc. Natl. Acad. Sci. USA 101, 17102 (2004), e-print arXiv:q-bio.MN/0412005 CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institut für FestkörperphysikDarmstadtGermany

Personalised recommendations