Advertisement

The European Physical Journal B

, Volume 56, Issue 1, pp 53–63 | Cite as

Evolution of imitation networks in Minority Game model

  • H. LavičkaEmail author
  • F. Slanina
Interdisciplinary Physics

Abstract.

The Minority Game is adapted to study the “imitation dilemma”, i.e. the tradeoff between local benefit and global harm coming from imitation. The agents are placed on a substrate network and are allowed to imitate more successful neighbours. Imitation domains, which are oriented trees, are formed. We investigate size distribution of the domains and in-degree distribution within the trees. We use four types of substrate: one-dimensional chain; Erdös-Rényi graph; Barabási-Albert scale-free graph; Barabási-Albert 'model A' graph. The behaviour of some features of the imitation network strongly depend on the information cost epsilon, which is the percentage of gain the imitators must pay to the imitated. Generally, the system tends to form a few domains of equal size. However, positive epsilon makes the system stay in a long-lasting metastable state with complex structure. The in-degree distribution is found to follow a power law in two cases of those studied: for Erdös-Rényi substrate for any epsilon and for Barabási-Albert scale-free substrate for large enough epsilon. A brief comparison with empirical data is provided.

PACS.

89.65.-s Social and economic systems 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion 02.50.-r Probability theory, stochastic processes, and statistics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.B. Arthur, Amer. Econ. Rev. (Papers and Proceedings) 84, 406 (1994) Google Scholar
  2. D. Challet, Y.-C. Zhang, Physica A 246, 407 (1997) CrossRefADSGoogle Scholar
  3. R. Savit, R. Manuca, R. Riolo, e-print arXiv:adap-org/9712006 Google Scholar
  4. R. Savit, R. Manuca, R. Riolo, Phys. Rev. Lett. 82, 2203 (1999) CrossRefADSGoogle Scholar
  5. D. Challet, Y.-C. Zhang, Physica A 256, 514 (1998) CrossRefGoogle Scholar
  6. D. Challet, M. Marsili, Phys. Rev. E 60, R6271 (1999) Google Scholar
  7. N.F. Johnson, S. Jarvis, R. Jonson, P. Cheung, Y.R. Kwong, P.M. Hui, Physica A 258, 230 (1998) CrossRefMathSciNetGoogle Scholar
  8. N.F. Johnson, P.M. Hui, R. Jonson, T.S. Lo, Phys. Rev. Lett. 82, 3360 (1999) CrossRefADSGoogle Scholar
  9. N.F. Johnson, D.J.T. Leonard, P.M. Hui, T.S. Lo, Physica A 283, 568 (2000) CrossRefADSGoogle Scholar
  10. R. D'Hulst, G.J. Rodgers, M. Ausloos, e-print arXiv:adap-org/9907003 Google Scholar
  11. A. Cavagna, J.P. Garrahan, I. Giardina, D. Sherrington, Phys. Rev. Lett. 83, 4429 (1999) CrossRefADSGoogle Scholar
  12. M.A.R. de Cara, O. Pla, F. Guinea, Eur. Phys. J. B 13, 413 (2000) ADSGoogle Scholar
  13. J.P. Garrahan, E. Moro, D. Sherrington, Phys. Rev. E 62, R9 (2000) Google Scholar
  14. J.P. Garrahan, E. Moro, D. Sherrington, e-print arXiv:cond-mat/0012269 Google Scholar
  15. A. Cavagna, Phys. Rev. E 59, R3783 (1999) Google Scholar
  16. D. Challet, M. Marsili, R. Zecchina, Phys. Rev. Lett. 84, 1824 (2000) CrossRefADSGoogle Scholar
  17. M. Marsili, D. Challet, R. Zecchina, Physica A 280, 522 (2000) CrossRefADSMathSciNetGoogle Scholar
  18. D. Challet, M. Marsili, R. Zecchina, Int. J. Theor. Appl. Finance 3, 451 (2000) zbMATHCrossRefGoogle Scholar
  19. M. Marsili, D. Challet, Phys. Rev. E 64, 056138 (2001) CrossRefADSGoogle Scholar
  20. T.S. Lo, P.M. Hui, N.F. Johnson, Phys. Rev. E 62, 4393 (2000) CrossRefADSMathSciNetGoogle Scholar
  21. M. Hart, P. Jefferies, P.M. Hui, N.F. Johnson, Eur. Phys. J. B 20, 547 (2001) CrossRefADSMathSciNetGoogle Scholar
  22. J.A.F. Heimel, A.C.C. Coolen, Phys. Rev. E 63, 056121 (2001) CrossRefADSGoogle Scholar
  23. A.C.C. Coolen, J.A.F. Heimel, D. Sherrington, Phys. Rev. E 65, 016126 (2002) CrossRefADSGoogle Scholar
  24. J.A.F. Heimel, A. De Martino, J. Phys. A: Math. Gen. 34, L539 (2001) Google Scholar
  25. T. Galla, A.C.C. Coolen, D. Sherrington, J. Phys. A: Math. Gen. 36, 11159 (2003) zbMATHCrossRefADSMathSciNetGoogle Scholar
  26. A.C.C. Coolen, The Mathematical Theory of Minority Games (Oxford University Press, Oxford, 2005) Google Scholar
  27. D. Challet, M. Marsili, Y.-C. Zhang, Minority Games (Oxford University Press, Oxford, 2005) Google Scholar
  28. N.F. Johnson, P. Jefferies, P.M. Hui, Financial Market Complexity (Oxford University Press, Oxford, 2003) Google Scholar
  29. Y.-C. Zhang, Europhys. News 29, 51 (1998) Google Scholar
  30. D. Challet, A. Chessa, M. Marsili, Y.-C. Zhang, Quantitative Finance 1, 168 (2001) CrossRefMathSciNetGoogle Scholar
  31. D. Challet, M. Marsili, Y.-C. Zhang, Physica A 276, 284 (2000) CrossRefADSMathSciNetGoogle Scholar
  32. P. Jefferies, M. Hart, P.M. Hui, N.F. Johnson, Eur. Phys. J. B 20, 493 (2001) CrossRefADSMathSciNetGoogle Scholar
  33. D. Challet, M. Marsili, Y.-C. Zhang, Physica A 294, 514 (2001) zbMATHCrossRefADSGoogle Scholar
  34. I. Giardina, J.-P. Bouchaud, M. Mézard, e-print arXiv:cond-mat/0105076 Google Scholar
  35. S. Moelbert, P. De Los Rios, Physica A 303, 217 (2002) zbMATHCrossRefADSGoogle Scholar
  36. T. Kalinowski, H.-J. Schulz, M. Briese, Physica A 277, 502 (2000) CrossRefADSGoogle Scholar
  37. F. Schweitzer, J. Zimmermann, H. Mühlenbein, Physica A 303, 189 (2002) zbMATHCrossRefADSGoogle Scholar
  38. E. Burgos, H. Ceva, R.P.J. Perazzo, Physica A 337, 635 (2004) CrossRefADSMathSciNetGoogle Scholar
  39. E. Burgos, H. Ceva, R.P.J. Perazzo, Physica A 354, 518 (2005) CrossRefADSGoogle Scholar
  40. G. Fagiolo, M. Valente, Computational Economics 25, 41 (2005) zbMATHCrossRefGoogle Scholar
  41. F. Slanina, Physica A 286, 367 (2000) zbMATHCrossRefADSGoogle Scholar
  42. F. Slanina, Physica A 299, 334 (2001) zbMATHCrossRefADSGoogle Scholar
  43. H.-J. Quan, B.-H. Wang, P.M. Hui, X.-S. Luo, Chinese Phys. Lett. 18, 1156 (2001) CrossRefADSGoogle Scholar
  44. H. Quan, B.-H. Wang, P.M. Hui, Physica A 312, 619 (2002) zbMATHCrossRefADSGoogle Scholar
  45. H.-J. Quan, B.-H. Wang, W.-S. Yang, W.-N. Wang, X.-S. Luo, Acta Physica Sinica 51, (2670) Google Scholar
  46. H.-J. Quan, B.-H. Wang, P.M. Hui, X.-S. Luo, Physica A 321, 300 (2003) zbMATHCrossRefADSMathSciNetGoogle Scholar
  47. L. Shang, X.F. Wang, Physica A 361, 643 (2006) CrossRefADSMathSciNetGoogle Scholar
  48. M. Anghel, Z. Toroczkai, K.E. Bassler, G. Korniss, Phys. Rev. Lett. 92, 058701 (2004) CrossRefADSGoogle Scholar
  49. B. Bollobás, Random Graphs (Academic Press, London, 1985) Google Scholar
  50. S.C. Choe, N.F. Johnson, P.M. Hui, Phys. Rev. E 70, 055101 (2004) CrossRefADSGoogle Scholar
  51. S. Gourley, S.C. Choe, P.M. Hui, N.F. Johnson, e-print arXiv:cond-mat/0401527 Google Scholar
  52. S. Gourley, S.C. Choe, P.M. Hui, N.F. Johnson, Europhys. Lett. 67, 867 (2004) CrossRefADSGoogle Scholar
  53. T.S. Lo, H.Y. Chan, P.M. Hui, N.F. Johnson, Phys. Rev. E 70, 05610 (2004) CrossRefGoogle Scholar
  54. T.S. Lo, H.Y. Chan, P.M. Hui, N.F. Johnson, Phys. Rev. E 71, 050101 (2005) CrossRefADSMathSciNetGoogle Scholar
  55. S.H. Lee, H. Jeong, J. Kor. Phys. Soc. 48, S186 (2006) Google Scholar
  56. S.H. Lee, H. Jeong, Phys. Rev. E 74, 026118 (2006) CrossRefADSGoogle Scholar
  57. A.-L. Barabási, R. Albert, Science 286, 509 (1999) CrossRefMathSciNetGoogle Scholar
  58. L. Kullmann, J. Kertész, K. Kaski, Phys. Rev. E 66, 026125 (2002) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague Prague 1Czech Republic
  2. 2.Institute of Physics, Academy of Sciences of the Czech RepublicPragueCzech Republic

Personalised recommendations