Advertisement

The European Physical Journal B

, Volume 56, Issue 1, pp 27–33 | Cite as

Ferromagnetic resonance in systems with competing uniaxial and cubic anisotropies

  • H. KachkachiEmail author
  • D. S. Schmool
Solids and Liquids

Abstract.

We develop a model for ferromagnetic resonance in systems with competing uniaxial and cubic anisotropies. This model applies to (i) magnetic materials with both uniaxial and cubic anisotropies, and (ii) magnetic nanoparticles with effective core and surface anisotropies; We numerically compute the resonance frequency as a function of the field and the resonance field as a function of the direction of the applied field for an arbitrary ratio of cubic-to-uniaxial anisotropy. We also provide some approximate analytical expressions in the case of weak cubic anisotropy. We propose a method that uses these expressions for estimating the uniaxial and cubic anisotropy constants, and for determining the relative orientation of the cubic anisotropy axes with respect to the crystal principle axes. This method is applicable to the analysis of experimental data of resonance type measurements for which we give a worked example of an iron thin film with mixed anisotropy.

PACS.

76.50.+g Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances 75.75.+a Magnetic properties of nanostructures 75.10.Hk Classical spin models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.A. Garanin, H. Kachkachi, Phys. Rev. Lett. 90, 65504 (2003) CrossRefADSGoogle Scholar
  2. H. Kachkachi, E. Bonet, Phys. Rev. B 73, 224402 (2006) CrossRefADSGoogle Scholar
  3. H. Kachkachi, D.A. Garanin, in preparation; R. Yanes, O. Chubykalo-Fesenko, H. Kachkachi, D.A. Garanin, R. Evans, R.W. Chantrell, submitted to Phys. Rev. B Google Scholar
  4. M. Jamet, W. Wernsdorfer, C. Thirion, D. Mailly, V. Dupuis, P. Mélinon, A. Pérez, Phys. Rev. Lett. 86, 4676 (2001) CrossRefADSGoogle Scholar
  5. B. Heinrich, J.F.C. Cochran, Adv. Phys. 42, 523 (1993) CrossRefADSGoogle Scholar
  6. A.G. Gurevich, G.A. Melkov, Magnetization oscillations and waves (CSC Press, Florida, 1996) Google Scholar
  7. M. Farle, Rep. Prog. Phys. 61, 755 (1998) CrossRefADSGoogle Scholar
  8. O. Mosendz, B. Kardasz, D.S. Schmool, B. Heinrich, J. Magn. Magn. Mater. 300, 174 (2006) CrossRefADSGoogle Scholar
  9. J.F. Cochran, in Ultrathin magnetic structures II, edited by B. Heinrich, J. Bland (Springer-Verlag, Berlin, 1994), p. 222 Google Scholar
  10. W.K. Hiebert, A. Stankiewicz, M.R. Freeman, Phys. Rev. Lett. 79, 1134 (1997) CrossRefADSGoogle Scholar
  11. B. Heinrich, in Ultrathin magnetic structures II, edited by B. Heinrich, J. Bland (Springer-Verlag, Berlin, 1994), p. 195 Google Scholar
  12. F. Gazeau, E. Dubois, M. Hennion, R. Perzynski, Yu. Raikher, Europhys. Lett. 40, 575 (1997) CrossRefADSGoogle Scholar
  13. V. Shilov, Yu. Raikher, J.-C. Bacri, F. Gazeau, R. Perzynski, Phys. Rev. B 60, 11902 (1999) CrossRefADSGoogle Scholar
  14. Yu. Raikher, M.I. Shliomis, Adv. Chem. Phys. 87, 595 (1994) CrossRefGoogle Scholar
  15. P.M. Déjardin, H. Kachkachi, Yu. P. Kalmykov, in preparation Google Scholar
  16. H. Kachkachi, M. Azeggagh, Eur. Phys. J. B 44, 299 (2005) CrossRefADSGoogle Scholar
  17. U. Netzelmann, J. Appl. Phys. 90, 1800 (1990) CrossRefADSGoogle Scholar
  18. A.H. Thomas, R.W. Chantrell, M. El-Hilo, P.W. Haycock, K. O'Grady, J. Magn. Magn. Mater. 151, 54 (1995) CrossRefADSGoogle Scholar
  19. M. Azeggagh, H. Kachkachi, to appear in Phys. Rev. B; e-print arXiv: condmat/0611609 Google Scholar
  20. H. Kachkachi, D.S. Schmool, in preparation (2007) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Groupe d'Étude de la Matière Condensée, Université de Versailles St. Quentin, CNRS UMR8635VersaillesFrance
  2. 2.Depto. de Fisica and IFIMUP, Universidade do PortoPortoPortugal

Personalised recommendations