Advertisement

The European Physical Journal B

, Volume 56, Issue 1, pp 15–26 | Cite as

Front roughening in three-dimensional imbibition

  • M. Dubé
  • C. Daneault
  • V. Vuorinen
  • M. Alava
  • M. RostEmail author
Solids and Liquids

Abstract.

We investigate the structure and dynamics of the interface between two immiscible liquids in a three-dimensional disordered porous medium. We apply a phase-field model that includes explicitly disorder and discuss both spontaneous and forced imbibition. The structure of the interface is dominated by a length scale ξ× which arises from liquid conservation. We further show that disorder in the capillary and permeability act on different length scales and give rise to different scalings and structures of the interface properties. We conclude with a range of applications.

PACS.

46.55.+d Tribology and mechanical contacts 81.40.Pq Friction, lubrication, and wear 07.79.-v Scanning probe microscopes and components 83.50.Lh Slip boundary effects (interfacial and free surface flows) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.I.J. van Dijke, K.S. Sorbie, J. Pet. Sci. Eng. 39, 201 (2003) CrossRefGoogle Scholar
  2. J. Rosinski, Am. Ink Maker 71, 40 (1993) Google Scholar
  3. J. Aspler, Nordic Pulp Paper Res. J. 1, 68 (1993) Google Scholar
  4. N. Poulin, P. Tanguy, J. Aspler, L. Larrondo, Can. J. Chem. Eng. 75, 949 (1997) CrossRefGoogle Scholar
  5. C.J. Ridgway, P.A.C. Gane, Nordic Pulp Paper Res. J. 17, 119 (2002) Google Scholar
  6. M.J. Blunt, M.D. Jackson, M. Piri, P.H. Valvatne, Adv. Water Resour. 25, 1069 (2002) CrossRefGoogle Scholar
  7. A. Leventis, D.A. Verganelakis, M.R. Halse, J.B. Webber, J.H. Strange, Transp. Porous Media 39, 143 (2000) CrossRefGoogle Scholar
  8. J.S. Ceballos-Ruano, T. Kupka, D.W. Nicoll, J.W. Benson, M.A. Ioannidis, C. Hansson, M.M. Pintar, J. Appl. Phys. 91, 6588 (2002) CrossRefADSGoogle Scholar
  9. N.M. Abboud, Transp. Porous Media 30, 199 (1998) CrossRefGoogle Scholar
  10. W. Hwang, S. Redner, Phys. Rev. E 63, 021508 (2001) CrossRefADSGoogle Scholar
  11. M. Alava, M. Dubé, M. Rost, Adv. Phys. 53, 83 (2004) CrossRefADSGoogle Scholar
  12. R. Lenormand, J. Phys. Cond. Mat. 2, SA79 (1990) Google Scholar
  13. M. Sahimi, Rev. Mod. Phys. 65, 1393 (1993) CrossRefADSGoogle Scholar
  14. A.M. Tartakovsky, S.P. Neuman, R.J. Lenhard, Phys. Fluids 15, 3331 (2003) CrossRefADSMathSciNetGoogle Scholar
  15. D. Ronen, H. Scher, M.J. Blunt, Trans. Porous Media 28, 159 (1997) CrossRefGoogle Scholar
  16. R.G. Hughes, M.J. Blunt, Trans. Porous Media 40, 295 (2000) CrossRefGoogle Scholar
  17. E. Aker, K.J. Maloy, A. Hansen, Phys. Rev. E 61, 2936 (2000) CrossRefADSGoogle Scholar
  18. M Dubé, F. Mairesse, J.P. Boisvert, Y. Voisin, Submitted, IEEE Trans. Image Analysis (2005) Google Scholar
  19. A.-L. Barabási, H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995) Google Scholar
  20. M. Dubé, B. Chabot, C. Daneault, M. Alava, Pulp & Paper Canada 106, 24 (2005) Google Scholar
  21. H. Leschhorn, T. Nattermann, S. Stepanow, L.-H. Tang, Ann. Physik 6, 1 (1997) ADSGoogle Scholar
  22. J.M. Schwarz, D.S. Fisher, Phys. Rev. E 67, 021603 (2003) CrossRefADSGoogle Scholar
  23. S.V. Buldyrev, S. Havlin, H.E. Stanley, Physical A 200, 200 (1993) CrossRefADSGoogle Scholar
  24. A. Rosso, W. Krauth, Phys. Rev. Lett. 87, 187002 (2001) CrossRefADSGoogle Scholar
  25. J. Bear, Y. Bachmat, Introduction to modeling of transport phenomena in porous media (Kluwer Academic, Dordrecht, 1991) Google Scholar
  26. T.J. Senden, M.A. Knackstedt, M.B. Lyne, Nordic Pulp Paper Res. J. 15, 554 (2000) Google Scholar
  27. C.J. Ridgway, P.A.C. Gane, J. Schoelkopf, J. Coll. Int. Sci. 252, 373 (2002) CrossRefGoogle Scholar
  28. D.E. Eklund, P.J. Salminen, Tappi Journal 69, 116 (1986) Google Scholar
  29. L.A. Richard, Physics (N.Y.) 1, 318 (1931) Google Scholar
  30. J. Asikainen, S. Majaniemi, M. Dubé, J. Heinonen , T. Ala-Nissila, Eur. Phys. J. B 30, 253 (2002) CrossRefADSGoogle Scholar
  31. R. Chandler, J. Koplik, K. Lerman, J.F. Willemsen, J. Fluid. Mech. 119, 249 (1982) zbMATHCrossRefADSGoogle Scholar
  32. C.-H. Lam, V.K. Horváth, Phys. Rev. Lett. 85, 1238 (2000) CrossRefADSGoogle Scholar
  33. M. Dubé, M. Rost, K.R. Elder, M. Alava, S. Majaniemi, T. Ala-Nissila, Phys. Rev. Lett. 83, 1628 (1999) CrossRefADSGoogle Scholar
  34. M. Dubé, M. Rost, M. Alava, Eur. Phys. J. B 15, 691 (2000) CrossRefADSGoogle Scholar
  35. M. Dubé, M. Rost, K.R. Elder, M. Alava, S. Majaniemi, T. Ala-Nissila, Eur. Phys. J. B 15, 701 (2000) CrossRefADSGoogle Scholar
  36. M. Dubé, S. Majaniemi, M. Rost, K.R. Elder, M. Alava, T. Ala-Nissila, Phys. Rev. E 64, 051605 (2001) CrossRefADSGoogle Scholar
  37. A. Hernández-Machado, J. Soriano, A.M. Lacasta, M.A. Rodríguez, L. Ramírez-Piscina, J. Ortín, Europhys. Lett. 55, 194 (2001) CrossRefADSGoogle Scholar
  38. I. Mitkov, D.M. Tartakovsky, C.L. Winter, Phys. Rev. E 58 R5245, (1998) Google Scholar
  39. P. Papatzacos, Trans. Porous Media 49, 139 (2002) CrossRefMathSciNetGoogle Scholar
  40. This compressibility arises from the finite curvature of the potential wells but only introduces a minor perturbation. On long time scales, the fluid is essentially incompressible, cf., the discussion above equation (4) Google Scholar
  41. J. Soriano, J.J. Ramasco, M.A. Rodríguez, A. Hernández-Machado, J. Ortín, Phys. Rev. Lett. 89, 026102 (2002) CrossRefADSGoogle Scholar
  42. D. Jasnow, J. Viñals, Phys. of Fluids 7, 747 (1996) Google Scholar
  43. E. Pauné, J. Casademunt, Phys. Rev. Lett. 90, 144504 (2003) CrossRefADSGoogle Scholar
  44. D. Wilkinson, J.F. Willemsen, J. Phys. A: Math. Gen. 16, 3365 (1983) CrossRefADSMathSciNetGoogle Scholar
  45. E.W. Washburn, Phys. Rev. 17, 273 (1921) CrossRefADSGoogle Scholar
  46. M. Rost, L. Laurson, M. Dubé, M. Alava, Phys. Rev. Lett. 98, 054502 (2007) CrossRefADSGoogle Scholar
  47. T. Laurila, C. Tong, S. Majaniemi, I. Huopaniemi, T. Ala-Nissila, Eur. Phys. J. B 46, 553 (2005) CrossRefADSGoogle Scholar
  48. D. Wilkinson, Phys. Rev. A 34, 1380 (1986) CrossRefADSGoogle Scholar
  49. D. Geromichalos, F. Mugele, S. Herminghaus, Phys. Rev. Lett. 89, 104503 (2002) CrossRefADSGoogle Scholar
  50. J.-F. Gouyet, B. Sapoval, M. Rosso, Phys. Rev. B 37, 1832 (1988) CrossRefADSGoogle Scholar
  51. J. Soriano, A. Mercier, R. Planet, A. Hernández-Machado, M.A. Rodríguez, J. Ortín, Phys. Rev. Lett. 95, 104501 (2005) CrossRefADSGoogle Scholar
  52. See e.g., R. Kant, Phys. Rev. E 53, 5749 (1996). For a self-affine interface, the the roughness exponent, χ< 1, leads to w(L)/L →0 asymptotically at large distances. This implies that \({\cal C}(z) \sim e^{-z/w}\). The result equation (39) is for the special case of an interface with Gaussian fluctuations. CrossRefADSGoogle Scholar
  53. V. Vuorinen, HUT project report (2003) Google Scholar
  54. J. Ketoja, K. Niskanen, in 12th Fundamental Research Symposium (Oxford, 2001) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • M. Dubé
    • 1
  • C. Daneault
    • 1
  • V. Vuorinen
    • 2
  • M. Alava
    • 2
  • M. Rost
    • 3
    Email author
  1. 1.Centre de Recherche en Pâtes et Papiers, Université du Québec à Trois-RivièresTrois-Rivières QuébecCanada
  2. 2.Laboratory of Physics, Helsinki University of TechnologyHUTFinland
  3. 3.Abteilung Theoretische Biologie, IZMB, Universität BonnBonnGermany

Personalised recommendations