The European Physical Journal B

, Volume 59, Issue 4, pp 475–483 | Cite as

Ferromagnetic resonance study of sputtered Co|Ni multilayers

  • J.-M.L. BeaujourEmail author
  • W. Chen
  • K. Krycka
  • C.-C. Kao
  • J. Z. Sun
  • A. D. Kent
Topical Issue on New Trends in Spin Transfer Physics


We report on room temperature ferromagnetic resonance (FMR) studies of [ t Co|2t Ni]  × N sputtered films, where 0.1 ≤ t ≤ 0.6 nm. Two series of films were investigated: films with the same number of Co|Ni bilayer repeats (N = 12), and samples in which the overall magnetic layer thickness is kept constant at 3.6 nm (N = 1.2/t). The FMR measurements were conducted with a high frequency broadband coplanar waveguide up to 50 GHz using a flip-chip method. The resonance field and the full width at half maximum were measured as a function of frequency for the field in-plane and field normal to the plane, and as a function of angle to the plane for several frequencies. For both sets of films, we find evidence for the presence of first and second order anisotropy constants, K1 and K2. The anisotropy constants are strongly dependent on the thickness t, and to a lesser extent on the total thickness of the magnetic multilayer. The Landé g-factor increases with decreasing t and is practically independent of the multilayer thickness. The magnetic damping parameter α, estimated from the linear dependence of the linewidth ΔH, on frequency, in the field in-plane geometry, increases with decreasing t. This behaviour is attributed to an enhancement of spin-orbit interactions with decreasing Co layer thickness and in thinner films, to a spin-pumping contribution to the damping.


76.50.+g Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance 75.30.Gw Magnetic anisotropy 75.70.Cn Magnetic properties of interfaces (multilayers, superlattices, heterostructures) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. See, for example, J.A. Katine, F.J. Albert, R.A. Buhrman, E.B. Myers, D.C. Ralph, Phys. Rev. Lett. 84, 3149 (2000); B. Öezyilmaz, A.D. Kent, D. Monsma, J.Z. Sun, M.J. Rooks, R.H. Koch, Phys. Rev. Lett. 91, 067203 (2003) CrossRefGoogle Scholar
  2. Y. Tserkovnyak, A. Brataas, G.E.W. Bauer, Phys. Rev. B 66, 224403 (2002) CrossRefADSGoogle Scholar
  3. B. Heinrich, Y. Tserkovnyak, G. Woltersdorf, A. Brataas, R. Urban, G.E.W. Bauer, Phys. Rev. Lett. 90, 187601 (2003); J.Z. Sun, B. Öezyilmaz, W. Chen, M. Tsoi, A.D. Kent, J. Appl. Phys. 97, 10C714 (2005) CrossRefADSGoogle Scholar
  4. J.-M.L. Beaujour, J.H. Lee, A.D. Kent, K. Krycka, C.-C. Kao, Phys. Rev. B 74, 214405 (2006) CrossRefADSGoogle Scholar
  5. J.Z. Sun, Phys. Rev. B 62, 570 (2000) CrossRefADSGoogle Scholar
  6. A.D. Kent, B. Öezyilmaz, E. del Barco, Appl. Phys. Lett. 84, 3897 (2004) CrossRefADSGoogle Scholar
  7. S. Mangin, D. Ravelosona, J.A. Katine, M.J. Carey, B.D. Terris, E.E. Fullerton, Nature Materials 5, 210 (2006) CrossRefADSGoogle Scholar
  8. G.H.O. Daalderop, P.J. Kelly, F.J.A. de Broeder, Phys. Rev. Lett. 68, 682 (1992) CrossRefADSGoogle Scholar
  9. W. Barry, I.E.E.E Trans. Micr. Theor. Techn. MTT 34, 80 (1996) CrossRefGoogle Scholar
  10. See, for example, D.L. Mills, S.M. Rezende, in Spin Dynamics in Confined Magnetic Structures II, edited by B. Hillebrands, K. Ounadjela (Springer, Heidelberg, 2002), pp. 27–58 Google Scholar
  11. E.A. Owen, D. Madoc Jones, Proc. Phys. Soc. B 67, 456 (1954) CrossRefADSGoogle Scholar
  12. X.D. Liu, H.Y. Zhang, K. Lu, Z.Q. Hu, J. Phys.: Condens. Matter. 6, L497 (1994) Google Scholar
  13. C.W. Su, Y.D. Yao, C.S. Shern, J. Magn. Magn. Mater. 282, 84 (2004) CrossRefADSGoogle Scholar
  14. C. Chappert, K. Le Dang, P. Beauvillain, H. Hurdequint, D. Renard, Phys. Rev. B 34, 3192 (1986) CrossRefADSGoogle Scholar
  15. L. Néel, J. Phys. Radium 15, 225 (1954) zbMATHCrossRefGoogle Scholar
  16. S.V. Vonsovskii, Ferromagnetic Resonance (Pergamon, Oxford, 1966) Google Scholar
  17. S.S. Kalarickal, P. Krivosik, M. Wu, C.E. Patton, M.L. Schneider, P. Kabos, T.J. Silva, J.P. Nibarger, J. Appl. Phys. 99, 093909 (2006) CrossRefGoogle Scholar
  18. C. Kittel, Phys. Rev. 110, 1295 (1958) zbMATHCrossRefADSMathSciNetGoogle Scholar
  19. P.E. Tannenwald, Phys. Rev. 121, 715 (1961) CrossRefADSGoogle Scholar
  20. D.H. Martin, Magnetism in Solids (Iliffe books, London, 1967), p. 67 Google Scholar
  21. R.K. Wangsness, Phys. Rev. 91, 1085 (1953) zbMATHCrossRefADSGoogle Scholar
  22. P.J.H. Bloemen, W.J.M. de Jonge, F.J.A. den Broeder, J. Appl. Phys. 72, 4840 (1992) CrossRefADSGoogle Scholar
  23. Y.B. Zhang, P. He, J.A. Woollam, J.X. Shen, R.D. Kirby, D.J. Sellmyer, J. Appl. Phys. 75, 6495 (1994) CrossRefADSGoogle Scholar
  24. M. Farle, Rep. Prog. 61, 755 (1998), and references therein CrossRefADSGoogle Scholar
  25. M. Tischer, O. Hjortstam, D. Arvanitis, J.H. Dunn, F. May, K. Baberschke, J. Trygg, J.M. Wills, B. Johansson, O. Eriksson, Phys. Rev. Lett. 75, 1602 (1995); A. Hahlin, J.H. Dunn, O. Karis, P. Poulopoulos, R. Nüthel, J. Lindner, D. Arvanitis, J. Phys.: Condens. Matter. 15, S573 (2003) CrossRefADSGoogle Scholar
  26. H. Hurdequint, J. Magn. Magn. Mater. 242–245, 521 (2002) Google Scholar
  27. G. Counil, J.-V. Kim, T. Devolder, C. Chappert, K. Shiegeto, Y. Otani, J. Appl. Phys. 95, 5646 (2004) CrossRefADSGoogle Scholar
  28. D.J. Twisselmann, R.D. McMichael, J. Appl. Phys. 93, 6902 (2003) CrossRefADSGoogle Scholar
  29. R. Elliott, Phys. Rev. 96, 266 (1954) zbMATHCrossRefADSGoogle Scholar
  30. Y. Tserkovnyak, A. Brataas, G.E.W. Bauer, B.I. Halperin, Rev. Mod. Phys. 77, 1375 (2005) CrossRefADSGoogle Scholar
  31. F.J. Jedema, A.T. Filip, B.J. van Wees, Nature (London) 410, 345 (2001) CrossRefADSGoogle Scholar
  32. J.-M.L. Beaujour, W. Chen, A.D. Kent, J.Z. Sun, J. Appl. Phys. 99, 08N503 (2006) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • J.-M.L. Beaujour
    • 1
    Email author
  • W. Chen
    • 1
  • K. Krycka
    • 2
  • C.-C. Kao
    • 2
  • J. Z. Sun
    • 3
  • A. D. Kent
    • 1
  1. 1.Department of PhysicsNew York UniversityNew YorkUSA
  2. 2.Brookhaven National LaboratoryUptonUSA
  3. 3.IBM T. J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations